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ABSTRACT

In this paper, we present new methods for parameterizing the con-
nections of neural networks using sums of direct products. We show
that low rank parameterizations of weight matrices are a subset of
this set, and explore the theoretical and practical benefits of repre-
senting weight matrices using sums of Kronecker products. ASR
results on a 50 hr subset of the English Broadcast News corpus in-
dicate that the approach is promising. In particular, we show that
a factorial network with more than 150 times less parameters in its
bottom layer than its standard unconstrained counterpart suffers min-
imal WER degradation, and that by using sums of Kronecker prod-
ucts, we can close the gap in WER performance while maintaining
very significant parameter savings. In addition, direct product DBNs
consistently outperform standard DBNs with the same number of pa-
rameters. These results have important implications for research on
deep belief networks (DBNs). They imply that we should be able to
train neural networks with thousands of neurons and minimal restric-
tions much more rapidly than is currently possible, and that by using
sums of direct products, it will be possible to train neural networks
with literally millions of neurons tractably–an exciting prospect.

Index Terms— Kronecker Product, Deep Belief Networks, Multi-
Layer Perceptron, Back-Propagation, Matrix Factorization.

1. INTRODUCTION

Recently there has been a resurgence of interest in utilizing deep
belief networks (DBNs) for machine learning tasks, including au-
tomatic speech recognition (ASR) [1, 2]. This resurgence has been
fueled by new algorithms for DBN training [3], new results demon-
strating significant performance improvements on practical tasks in-
cluding ASR [1, 2], and the availability of large amounts of train-
ing data for these tasks [4]. However, despite this recent success,
which has been largely facilitated by our ever-increasing computing
capabilities, DBNs remain extremely time consuming to train–even
“small” networks with just thousands of neurons (nodes) can take
months to learn [4]. In practice, this severely restricts both the num-
ber of layers that can be utilized, and the number of neurons per DBN
layer, which in turn, presumably limits their potential performance.
Currently most DBNs used in practice are trained layer by layer, and
are restricted to have connections only between nodes in adjacent
layers. The set of connections between any two adjacent layers (and
their strength) can be and usually is represented by a “weight ma-
trix”, W . If layer i of the network has m nodes, and layer j has
n nodes, then the connections between these two (adjacent) layers
can be expressed as a m × n matrix, W . This weight matrix is
typically either unconstrained (m × n connections) or highly con-
strained ahead of time (weight-tying, weight zeroing, etc.). More
recently, several researchers have attempted to automatically learn

the structure of the weight matrix, by imposing constraints such as
sparsity [5] or low rank [2, 6].
In this paper, we present new methods for parameterizing the con-
nections of neural networks using sums of direct products, and ex-
plore the theoretical and practical benefits of representing weight
matrices using sums of Kronecker products. Preliminary ASR re-
sults on a 50 hr subset of the English Broadcast News corpus indicate
that the approach is extremely promising, and has important impli-
cations for future research on DBNs. In particular, these new results
imply that we can train neural networks with thousands of neurons
and minimal restrictions much more rapidly than is currently possi-
ble, and that by using sums of direct products, it will be possible to
train neural networks with millions of neurons.

2. MODEL

We are interested in modeling the connectivity between two sets of
binary random variables having M and N nodes, respectively, via
the matrix W ∈ RM×N , which is constrained to have the following
form:

W =
∑

i

Ai ⊙Bi, (1)

where ⊙ is a cartesian product-based direct matrix product that maps
suitably defined matrices Ai ∈ RMi×Ni and Bi ∈ ROi×Pi to
RM×N . As discussed in [7], the set of possible direct products that
may be formed by any two matrices can be fully specified via the
outer, Kronecker, and recently introduced box product.
In this paper, for simplicity and concreteness, we restrict our atten-
tion to a slightly simpler form of W :

W =
∑

i

Ai ⊗Bi, (2)

where ⊗ is the Kronecker product, keeping in mind that the re-
sults that follow apply more or less directly to the full representa-
tion (1) 1. This restriction immediately implies that MiOi = M and
NiPi = N . Kronecker graphs for modeling network connectivity by
composed successive Kronecker products of matrices (as opposed to
sums of Kronecker products), were studied in [8]. Representing the
weight matrix of a neural net layer by a single Kronecker product
we believe has been studied in many application contexts, but we
are unaware of any studies on utilizing sums of Kronecker products
to approximate weight matrices.
The principle utility of Kronecker-factorized matrices is that matrix

1outer products are Kronecker products of vectors, and the multiplication
of a box product by a vector can be achieved by multiplying by a suitably
defined Kronecker product and then transposing the result.
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multiplication is efficient. It is well known that for a M ×N matrix
W = Ai ⊗Bi:

(Ai ⊗Bi)vec(Z) = vec(BiZA
T
i ) (3)

where the vec() operator converts a matrix to a vector by stacking
its columns. The complexity of matrix-vector multiplication is there-
fore reduced from O(MiOiNiPi) to O(MiNiPi + NiPiOi). For
Mi = Ni = Oi = Pi = sqrt(M) = sqrt(N) = K, this implies
that the complexity goes from O(K4) to O(K3).

3. FORWARD PROPAGATION

Propagating the input to a given DBN layer up the network involves
only matrix multiplication, the addition of a vector of biases, and the
application of a non-linearity:

zj ≡ p(hj |hj−1) = σ(xj) = σ(Wzj−1 + bj) (4)

where σ is typically taken to be the sigmoid or hyperbolic tangent
function, and is applied elementwise to the vector xj .
If W is structured according to (2), (3) immediately implies that:

xj =
∑

i

(Ai ⊗Bi)zj−1 + bj

=
∑

i

vec(BiZ
j−1
i A

T
i ) + bj (5)

where Z
j−1
i ≡ matAi,Bi

(zj−1), denotes the matrix that results
from (column-major) reshaping of the vector xi so that it can be
left and right multiplied by Bi and AT

i , respectively. As discussed
previously, the factorization of the weight matrix into sums of Kro-
necker products, depending on the number and dimensions of the
{Ai, Bi}, can lead to substantial savings in computation and storage
associated with a given network layer.
Each Kronecker product (5) implicitly makes an independence as-
sumptions about the input (left multiplication by a matrix acts
independently on rows and right multiplication independently on
columns). Such a factorization is natural in many circumstances,
such as for the bottom layer of multi-frame (spliced) input features,
where the rows of Bi and columns of Ai correspond to learned
frame-level and temporal patterns in the input features, respectively.
When sums of Kronecker products are utilized to approximate W ,
the model strengthens, and the independence assumptions corre-
spondingly diminish. Indeed, the problem of minimizing the Frobe-
nius norm of a sum of a given number of Kronecker products repre-
sentation with the size of {Ai ∀i∈Rm×n} and {Bi ∀i ∈ Ro×p} can
be transformed into an singular value decomposition (SVD) problem
and easily solved, as shown in [9].

4. BACKWARD PROPAGATION OF ERRORS

Computing the gradient of the loss function E w.r.t. the parameters
of a DBN involves propagating what are often called the errors, δj ≡
∂E
∂xj

, backward through the network:

δj−1 = σ
′(xj−1) ·W

T
δj (6)

where · denotes elementwise multiplication. Since (A ⊗ B)T =
AT ⊗ BT and (A + B)T = AT + BT , when W is represented

using a sum of Kronecker products the result immediately follows:

δj−1 = σ
′(xj−1) ·

∑

i

vec(BT
i ∆

j
iAi) (7)

where ∆j
i ≡ matAT

i
,BT

i
(δj). This notation was described in detail

for Zj−1
i in (5) in the previous section.

The (matrix formatted) gradient of E w.r.t. Ai is given by:

∂E

∂Ai

= ∆
(j)T

i BiZ
j−1
i (8)

The (matrix formatted) gradient of E w.r.t. Bi is given by:

∂E

∂Bi

= ∆j
iAiZ

(j−1)T

i (9)

The first result is derived below:

∂E

∂(Ai)mn

=
∑

o

∂E

∂(Xj
i )om

∂(Xj
i )om

∂(Ai)mn

(10)

=
∑

o

(∆j
i )om

∂

∂(Ai)mn

[
∑

np

(Ai)mn(Bi)op(Z
j−1
i )pn]

=
∑

o

(∆j
i )om

∑

p

(Bi)op(Z
j−1
i )pn

= (∆
(j)T
i BiZ

(j−1)
i )mn (11)

The latter result follows similarly.

5. EXPERIMENTS

Experiments were carried out on a 50-hours English Broadcast News
task [10]. The training set contains 50 hours of data from the 1996
and 1997 English Broadcast News Speech Corpora. The test set
is 3 hours of EARS dev-04f set. The DBN was used in a hybrid
mode, i.e. acting as an acoustic model, replacing the conventional
GMMs. It was trained to estimate posterior probabilities of 2220
sub-phoneme acoustic classes, which were in turn used as emis-
sion probabilities in a Hidden Markov Model. The DBN input fea-
tures were derived from 13-dimensional Perceptual Linear Predic-
tion (PLP) cepstral features normalized by Vocal Tract Length Nor-
malization (VTLN) and Ceptral Mean Substraction (CMS), which
were then spliced to form 9*13=117 input features (±4 frames of
context). The DBN topology was [117, 1024, 1024, 2220] units,
meaning three fully connected layers (L1, L2, L3) with Bernoulli
output units in hidden layers L1, L2 and a softmax activation at the
output layer L3.
The DBN was initialized randomly with no pretraining and trained
using standard error back-propagation and the cross-entropy crite-
rion. The training set was split into train and dev sets of 45 hrs and
5 hrs, respectively. After each iteration over the train set, the per-
frame classification accuracy (FAcc) was evaluated on the dev set
and once the performance ceased to improve, the learning rate was
halved. The training was stopped as soon as the learning rate fell
under a threshold. The training targets were obtained from a forced-
alignment of transcripts with an existing model.
The baseline performance of 40-dimensional LDA features obtained
from the above PLP features trained speaker-adaptively is 23.2%
WER and the performance of the baseline DBN is 23.0% WER.
Note, however, that this baseline is far from state-of-the-art. State-
of-the-art DBN systems for ASR utilize more network layers, more
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elaborate DBN training recipes such as sequence-level training, and
more discriminative feature representations such as feature-level
Minimum phone error (fMPE), which are themselves discriminately
trained at the sequence level [11]. Our goal here is to begin explor-
ing the new ideas that are presented in this paper, using systems that
can be trained and optimized relatively quickly, and with minimal
dependency and interaction with other system components.

5.1. Factoring an existing DBN into Kronecker products

We initiated our investigation into factoring weight matrices into
sums of Kronecker products by investigating how much Kronecker
product structure was naturally present in the weight matrix L1,
since its input is actually a matrix (i.e. spliced features), and the fea-
tures are quasi-stationary. We took the weight matrix of the above
DBN’s L1 layer and decomposed it into a sum of Kronecker products
via the SVD method proposed in [9]. Reconstructing the weights
matrix using only the first N singular values of SVD can be di-
rectly interpreted as decomposing the original matrix into a sum of
N Kronecker products. Here we factored the input dimension only:
W [1024, 117] ≈

∑
i Ai[1024, 9]⊗Bi[1, 13]; layers L2 and L3 were

left intact.
Table 1 gives the performance as a function of the number
of factorized terms, measured in Word Error Rate and matrix
reconstruction error – Mean Square Error Ratio, MSER =
∑

mn ((W )mn−(W̃ )mn)2
∑

mn (W )2mn
. In our case, 9 terms was enough for a per-

fect reconstruction. Apparently, we can reduce the number of pa-
rameters in L1 by 1.8 times to only 5 terms with no impact on over-
all performance. This confirms that Kronecker structure is naturally
present in L1. Using less than 5 terms rapidly degrades the perfor-
mance and suggests to incorporate the factorization directly into the
DBN training process so that all layers are trained jointly.

terms L1 savings factor MSER %WER
1 8.9939 0.7395 95.8
2 4.4970 0.4954 95.7
3 2.9980 0.3137 65.7
4 2.2485 0.1689 61.5
5 1.7988 0.0850 23.0
6 1.4990 0.0333 22.9
7 1.2848 0.0148 22.9
8 1.1242 0.0059 23.0
9 0.9993 0.0000 23.0
original 1 - 23.0

Table 1. WER and MSER as a function of the number of terms in the
factorization. Post-training factorization of L1 weight matrix, input
(9*13) dimension only.

The DBN input of 9 frames times 13 coefficients determines a suit-
able factorization of the input L1 dimension. However, it is not clear
if we can benefit from factoring the output dimension of 1024. Fig.
1 gives some insight. It shows MSER as a function of Savings Fac-
tor (SF is defined as a ratio of number of parameters in original and
factored matrices). SF in turn depends on two things. On the num-
ber of terms used (the more terms, the less savings and the lower
error) and also on the output dimension factorization which varies
from 1024 = 1 ∗ 1024 = 2 ∗ 512 = ... = 32 ∗ 32 = ... = 1024 ∗ 1
(biggest savings for the square 32*32 case), the first factor given in
the legend of the image. Note that Tab. 1 operates on the dark blue
curve of Fig. 1. The same curves for a random matrix (shown in

grey) give a rough upper bound on the MSER. Clearly only very
modest SFs are achieved for low MSERs. Note, however, that in
deriving these results we have (so far) made no attempt to ’pool’
output nodes into clusters that would make the assumed Kronecker
structures more viable. This could improve the results substantially.
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Fig. 1. MSER vs. savings factor for a fixed input factorization
(9*13), variable output factorization (given in the legend), and vary-
ing number of sum terms.

5.2. Training Factored Weight Matrices: Simulation via peri-
odic SVD

As a next step, we incorporated the factorization into the training
process. We re-used the original training recipe but enforced the
factored structure of the weight matrix in the first layer by replac-
ing it by its SVD-derived sum of Kronecker products approxima-
tion every few updates. Since SVDs are expensive, we tried to
minimize thier use. An empirical search suggested that factoring
the matrix every 5 updates preserved the performance of factoriza-
tion after every update (we do one weight update per one training
utterance). We also factored the matrix at the end of the train-
ing. Here we factored both input and output dimensions of L1:
W [1024, 117] =

∑
i Ai[32, 9]⊗Bi[32, 13]; layers L2 and L3 were

again left unfactored.
Table 2 shows the model performance as a function of the number
of terms. We can see that with only one single term, one can reduce
the number of L1 parameters by approximately 170 times with only
7.6% relative drop in performance.

5.3. Training Factored Weight Matrices Via Projected Gradient

The inconsistency and inefficiency of the periodic SVD method for
constraining the weight matrix led us to pursue a more direct ap-
proach. We next considered projecting the gradient of the full weight
matrix onto a sum of Kronecker-product restricted parameterization
of it via the chain rule. More specifically, we utilized the following
procedure:

• Compute gradient of W , ∂E
∂W

.
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terms %FAcc %WER
1 34.1 24.3
2 33.7 25.0
3 34.0 24.5
all (baseline) 35.0 23.0

Table 2. FAcc (Frame Accuracy) and WER as a function of the num-
ber of terms in the factorization of the L1 weight matrix. The training
recipe enforces the factorization of W into sum of Kronecker prod-
ucts via SVD every 5 training utterances. The results do not show a
positive trend w.r.t increasing the number of factors in the represen-
tation, despite the fact that the projection was verified to be frequent
enough to ensure consistent selection of the top singular values.

L1 Topology FA WER L1 PR
[117,1024] 35.0 23.0 1

1x[32*32,32*32] 32.8 25.0 170
2x[32*32,32*32] 32.9 24.9 85
3x[32*32,32*32] 33.2 24.6 57

Table 3. Frame Accuracy (FA) and Word Error Rate (WER) as a
function of the number of Kronecker terms in the trained representa-
tion of the L1 weight matrix (L2 and L3 have topology [1024,1024]
and [1024,2048] in all cases). The ratio of the number of parameters
of the baseline model relative to each model (parameter ratio, PR) is
also shown for layer 1.

• Rearrange ∂E
∂W

to form ∂E

∂W̃
as if preparing W̃ to do an SVD

[9].

• Compute the gradient of and update U and V , assuming that
W̃ = UV T , where the columns of U each correspond to a
Bi, the columns of V to a Ai. ∂E

∂U
= ∂E

∂W̃
V , ∂E

∂V
= U ∂E

∂W̃

T
.

• Update W̃ , rearrange to obtain W .

This method has the advantage that it utilizes existing training code
as a subroutine so that factorizations of W can be investigated, but
does not realize the computation and storage benefits that the pa-
rameterization of the matrices affords. This method was utilized to
generate the results depicted in Table 3 and 4. These preliminary re-
sults suggest that the number of parameters in existing DBNs could
potentially be greatly reduced, and that direct product DBNs outper-
form standard DBNs with the same number of parameters.

5.4. Training Factored Weight Matrices Natively

As discussed above, the next step is to utilize sum-of-Kronecker
product parameterizations of W natively within the core routines
of a DBN trainer. It is our intention to do so and investigate how
fast such networks are to train and utilize when practical aspects of
the computation, in addition to storage and number of computational
operations, such as the regularity and parallelizability of the compu-
tation, are important considerations. In traditional DBN trainers, a
matrix of input data with stacked frames can be processed in each
layer by one matrix-matrix product, and the elementwise applica-
tion of non-linearities. The computation when utilizing Kronecker-
structured weight matrices is greatly reduced (both directly, and be-
cause there are less parameters to train) but has more granularity.

Topology PR PR FA WER
L1/L2/L3 L1/L2/L3 DBN
[117,1024] (baseline) 1 1 35.0 23.0
[1024,1024] 1
[1024,2220] 1
[117,740] 1.4 1.5 32.7 26.4
[740,740] 1.9
[740,2220] 1.4
[117,280] 3.7 4.7 31.2 27.7
[280,280] 13.4
[280, 2220] 3.7
[117,135] 7.6 10.3 28.8 31.2
[135,135] 57.3
[135 2220] 7.6

5x[9*13,32*32] 27 1.5 33.7 24.8
10x[32*32,32*32] 49
[1024,2220] 1
5x[9*13,32*32] 27 4.7 31.9 26.9
10x[32*32,32*32] 49
10x[32*32,1*2220] 3.2
5x[9*13,32*32] 27 10.3 29.8 29.1
20x[32*32,32*32] 25
4x[32*32,1*2220] 7.9

Table 4. Frame Accuracy (FA) and Word Error Rate (WER) as a
function of DBN topology. The ratio of the number of parameters
of the baseline model to each model (parameter ratio, PR) is also
shown for each layer, and overall. Direct Product DBNs consistently
outperform unstructured DBNs with the same number of parameters
(same DBN PR).

6. CONCLUSION

In this paper we introduced the idea of representing the weight ma-
trices used in DBNs as sums of direct matrix products. While the
preliminary results are promising, there is clearly much that has yet
to be explored. More experimentation will be required to fully as-
sess the potential of this new framework. In addition, the exper-
iments in this paper have focused on utilizing sums of Kronecker
products that have factors Ai, Bi that have the same dimension ∀i.
This constraint has the advantage that estimating the weight ma-
trix can be transformed into an SVD problem, but is not neces-
sary. In any case, the prospect of being able to train conventional
sized DBNs more quickly, and train much larger DBNs with direct-
product-constrained weight matrices, is compelling.
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