RANDOM FEATURES FOR KERNEL DEEP CONVEX NETWORK

Po-Sen Huang', Li Deng*, Mark Hasegawa-Johnson', Xiaodong He*

TDepartment of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
fMicrosoft Research, Redmond, WA, USA

{huangl4s,

ABSTRACT

The recently developed deep learning architecture, a kernel
version of the deep convex network (K-DCN), is improved to
address the scalability problem when the training and testing
samples become very large. We have developed a solution
based on the use of random Fourier features, which possess
the strong theoretical property of approximating the Gaussian
kernel while rendering efficient computation in both train-
ing and evaluation of the K-DCN with large training sam-
ples. We empirically demonstrate that just like the conven-
tional K-DCN exploiting rigorous Gaussian kernels, the use
of random Fourier features also enables successful stacking
of kernel modules to form a deep architecture. Our evaluation
experiments on phone recognition and speech understanding
tasks both show the computational efficiency of the K-DCN
which makes use of random features. With sufficient depth in
the K-DCN, the phone recognition accuracy and slot-filling
accuracy are shown to be comparable or slightly higher than
the K-DCN with Gaussian kernels while significant computa-
tional saving has been achieved.

Index Terms— kernel regression, deep learning, spoken
language understanding, random features

1. INTRODUCTION

Deep learning has achieved many state of the art results in
speech and language processing in recent years [1, 2]. By ex-
ploiting deep architectures, deep learning techniques are able
to learn different levels of abstraction and further discriminate
among data. While deep learning techniques such as deep
neural networks have shown remarkable results in recogni-
tion and classification tasks, training deep learning models
has proved to be computationally difficult [1, 2].

Another architecture, Deep Convex Network (DCN), was
proposed to address the scalability issue [3, 4]. Instead of
using a large number of hidden units in DCN, Kernel Deep
Convex Network (K-DCN) was further proposed to use a ker-
nel trick so that the number of hidden units in each DCN layer
is unbounded [5]. However, K-DCN with a Gaussian kernel

The authors thank Benjamin Recht, Sanjiv Kumar, and Abhishek Singh
for helpful discussions.

978-1-4799-0356-6/13/$31.00 ©2013 IEEE

3143

jhasegaw}@illinois.edu, {deng, xiache}@microsoft.com

suffers some limitations in memory and computation, when
there are a large number of training and testing samples.

In this paper, we propose a method for efficiently train-
ing and testing K-DCN using the Bochner Fourier-space sam-
pling approximation of a Gaussian kernel in each of the K-
DCN modules. By projecting original features to a higher
dimensional space explicitly, we can achieve similar perfor-
mance as K-DCN but with better computational efficiency in
time and memory. We demonstrate the effectiveness of our
approach on ATIS slot filling and TIMIT phone classification
tasks.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the kernel deep convex network (K-DCN).
Section 3 discusses the limitation of the original K-DCN, and
possible solutions in the literature which only addressed the
computation and memory problem in training but not in eval-
uation. Section 4 presents random features and the applica-
tion to solve the computation and memory problem in both
training and evaluation for each of the K-DCN modules. The
experimental setups, along with results, are described in Sec-
tion 5. Section 6 concludes the paper and discusses future
work.

2. KERNEL DEEP CONVEX NETWORK

Kernel Deep Convex Network (K-DCN) was proposed in [5],
which is a kernel version of the deep convex network (DCN)
[3, 4]. In the DCN or K-DCN framework, the outputs from
all previous modules are concatenated with the original input
data as a new input for the current module. Figure 2 shows an
example of a three-layer K-DCN architecture.

The single module of a K-DCN is a ridge kernel regres-
sion, which can be expressed as:

N
f(x) = Zaik(x, x;) = k(x) ()
i=1

where a sample x is evaluated with respect to all the train-
ing samples {x;} ,, vector k(x) is with element k, (x) =

k(xn,x), and « is the regression coefficient. Using the train-
ing data, the ridge regression coefficient has a closed form
solution of the following form:

a=A+K)'Y (2)

ICASSP 2013

[)

o®

[Preds Y(D e 42 :]] X®

22

o)

[Prediction Y(1)] x@

2
KD =Z(X)Z(X)"; Z(X) € R?P Z(X) = [cos(QTX), sin(QTX)]

o™ Taxp
Q~N(O0,
.-z

Input Data X x®

Fig. 1. Architecture of a three-layer K-DCN with random
Fourier features. €2 is a random matrix with values sampled
from NV(0,Lixp/0?). Z(X) = [cos(QTX),sin(QTX)] is
a random projection of input X. Parameters o and A are the
standard deviation for the Gaussian random variable and the
regularization parameter for kernel ridge regression, respec-
tively.

where) is the regularization parameter, K € RV <V is a ker-
nel matrix with elements K., = k(Xpm,X,), {x;}V, are
from the training set, and Y = [yi,...,yn]t € RV*M
are the label vectors for training, where M is the number of
classes and y;, 1 < ¢ < N, is a vector of size M with the
only nonzero entry one as the class label [6].

3. LARGE SCALE KERNEL MACHINES

3.1. Limitation in large scale cases

In the kernel regression framework, solving Eq. (2) suffers
difficulty when there is a large number of training data. Sup-
pose there are N training samples. It takes O(N?) storage for
the kernel matrix and O(N?) time for computing the matrix
inversion.

In the evaluation stage, as shown in Eq. (1), each sample
is evaluated with respect to all the training samples. Suppose
x, {x;}V; € R% To evaluate a sample, it takes O(Nd) oper-
ations to compute k(x,x;) with each training vector x;, and
the training vectors must be retained in memory. For a large
training dataset, these testing costs are significant.

3.2. Related Work

To handle the limitation in large scale data cases, several ap-
proaches have been proposed. The approaches can be cate-
gorized into two categories: (i) selecting a subset of training
data and (ii) approximating the kernel matrix.

(1) Burges and Scholkopf proposed a reduced set method by
finding a smaller number training set in order to improve clas-
sification speed [7]. Baudat and Anouar further proposed a
feature vector selection method by finding a subset S of the
training data, forming a basis in the feature space, where the
cardinality of the subset |S| < N. Equation (1) can be ap-
proximated as:

FE) &Y Bio(x)o(x) =D Bik(x,x;) (3)

€S €S

Although computation and storage are lower with a smaller
set of training samples, this approach requires O(N L?) com-
putation cost to search a subset of size L sampled among N
vectors. Moreover, selecting a subset of training data loses
information by throwing away training samples, and is inef-
ficient in finding a good subset among a large scale dataset
[8].

(i) To reduce the storage and computation cost on a kernel
matrix, the kernel matrix can be approximated by throwing
away individual entries [9], by throwing away entire columns
[10, 11], or by a linear kernel [12]. Nystrom methods sample
a subset columns of the original kernel matrix [10, 11, 13].
With Nystrom Woodbury Approximation, Equation (2) can
be computed efficiently, as shown in Eq. (4).

(M +K)'Y

~ (M +CW;Cch) 'y 4)
. %(Y ~ CPI + W CTC] ' Wi CTY)

where C € R™*Y is formed by selecting m columns of
K, W is the intersection of these m columns with the cor-
responding m rows of K, and Wk+ is the pseudo inverse
of the k-rank approximation of W. However, in the evalua-
tion stage, the limitation mentioned in Section 3.1 still exists.
A linear random projection method was proposed in [9] to
speed up kernel matrix evaluation, but it still takes O (N log d)
to evaluate a sample. The random features method approach
maps input data to a random feature space and approximate
a kernel function by a linear kernel [12]. The detailed theo-
rem and application to K-DCN will be presented in the next
section.

4. RANDOM FEATURES

The kernel trick of a kernel function k(x,y), x,y € R%is to
compute an inner product between implicitly mapped features
in a high dimensional space, i.e., k(x,y) = (¢(x), ¢(y)). In-
stead of using the implicit feature mapping in the kernel trick,
Rahimi and Recht proposed a random feature method for ap-
proximating kernel evaluation [12]. The idea is to explicitly
map the data to a Euclidean inner product space using a ran-
domized feature map z : R? — RP” such that the kernel eval-
uation can be approximated by the inner product between the

3144

transformed pair:

k(x,y) = (6(x), ¢(y)) =~ z(x) " 2(y))

Theorem 1. (Bochner’s Theorem [14]) A kernel k(x,y) =
k(x —y) on R? is positive definite if and only if k(5) is the
Fourier transform of a non-negative measure.

Bochner’s theorem guarantees that the Fourier transform p(w)
of a shift-invariant and properly scaled kernel k(¢) is a prob-

ability distribution. Defining z,(x) = e/ *, we get
k(x—y) :/ pw)el V) dw = By [z, (%) 20(¥)*] (6)
Rd

where z,(x)z,(y)* is an unbiased estimate of k(x,y)
when w is sampled from p(w). For example, p(w) =

Hell3 . .
(2’/T)7%67 2~ is the Fourier transform of a Gaussian kernel
IENIES
E(A)=e 2"

To reduce the variance of the estimate, we can concate-
nate D randomly chosen z,, into a column vector z and nor-
malize each component by v/D. Therefore, the inner product
z(x)Tz(y) = 5 Zle Zu,; (X) 2w, (y) is a sample average of
2w, (x)T 2, (y) and is a lower variance approximation to the
kernel function. The approximation converges to the kernel
function exponentially fast in D [12]. The quality of the ap-
proximation is determined by the mapping dimension D [15].

To obtain real valued random features, we can replace
2, (x) by the mapping z,,(x) = [cos(x), sin(x)]T, which also
satisfies the condition E,, [z, (x)z,(y)*] = k(x,y). The vec-
tor z(x) = %[COS(wlTX), .o.,cos(wptx), sin(wy Tx), .. .,
sin(wpTx)]T is a 2D-dimensional random Fourier feature of
the input feature x, where w1, ...,wp € R< are drawn from
p(w). For a Gaussian kernel, w;, ¢ = 1,..., D, are drawn
from a Normal distribution A/(0, I4/0?).

4.1. Solution

By using the random Fourier feature approximation, we can
resolve the limitation mentioned in Section 3.1. In the training
stage, first, define X = [xq,...,xy] € RN and Z(X) =
[cos(2TX),sin(QTX)] € R2P*N | where € is a random
matrix with values sampled from N(0, Ly« p/0?). The ker-
nel can be approximated by Z(X)TZ(X) ~ K € RV*V,
We can write Eq. (1) in the matrix form as follows:

Y = Ka=Z(X)"Z(X)a @)

Instead of computing and storing Z(X) in the memory, we
can use a trick to first compute the following equation:

Z(X)Y = Z(X)Z(X)TZ(X)«)
Then, defining w = Z(X)«, we can solve for w as follows:

w=(\+ZX)ZX)")H'Z(X)Y)

Table 1. Comparison between kernel ridge regression and
random feature kernel regression using a Gaussian kernel

Random Feature

Kernel Ridge Regression Kernel Regression
Kernel gcg(:\xz — x;|[2/20) K;; = z(x;)Tz(x;)
szilrgﬁi a=QI+K)7Y ‘(A;\I:-&- Z(X)Z(X)") 1 Z(X)Y
];::\;ilrﬁitli;n F(x) =225 cik(x, %) F(x) = wha(x)

In this case, we compute and store the matrix Z(X)Z(X)T €
R2P*2D 7(X)Y € R2P*M only,
In the evaluation stage, Eq. (1) can be written as follows:

N N
fx) = Zaik(x, Xi) = Zaiz(x)z(xi) =wlz(x)
i=1 i=1

(10)
where w = vazl ;z(x;) = Z(X)a is solved in the training
stage. The function f(x) = wTz(x) requires only O(D + d)
operations and storage. Table 1 summarizes the comparison
between kernel ridge regression and random feature kernel
regression using a Gaussian kernel.

5. EXPERIMENTS

In this section, we examine the effectiveness of K-DCN with
random Fourier features, denoted as K-DCNRF, on ATIS slot
filling and TIMIT phone classification tasks.

5.1. ATIS Experiments

We conduct slot-filling experiments on the ATIS dataset fol-
lowing similar settings as described in [16]. In the task, each
word will be tagged by a slot ID, and there is a total of 127
slot IDs. An example of a sentence and its slot ID sequence is
provided below, following the in/out/begin (IOB) representa-
tion, e.g., Boston and New York are the departure and arrival
cities and today is the date.

Table 2. An example of a sentence and its slot ID sequence.

sentence | show | flights | from | Boston | to | New | York | Today

Slot ID (6] (6] (6] B-dept | O | B-arr | l-arr | B-date

The training set consists of 4978 sentences and the test
set consists of 893 sentences. In the experiment, we project
each word to a 50-dimensional dense vector by looking-up a
embedding mapping table, which is trained through unsuper-
vised learning on Wikipedia text corpus [17]. Then we con-
catenate the embedding vectors in a context window to form
a contextual vector as the input for K-DCN/K-DCNREF. As in
classical classification tasks, the output of K-DCN/K-DCNRF
is a 127-dimensional vector, each element corresponds to one
slot ID. K-DCN/K-DCNREF is then trained on the training set.
The results of K-DCN/K-DCNRF with various window sizes

3145

are reported in Table 3 in slot ID prediction error rate. In con-
trast, a logistic regression baseline that uses n-gram features
(n=1~5) derived from a five-word window obtains a slot er-
ror rate of 4.38%. We also present a strong baseline using
linear CRF. The result is obtained using only lexical features,
with the default parameters of the CRF++ toolkit, following
[18]. This gives a slot ID error rate of 3.42%. In Table 3,
we show that, by projecting original features to a high di-
mensional space explicitly, K-DCNREF can achieve similar (or
even slightly better) performance to K-DCN. Moreover, in the
five-word window case, K-DCNRF outperforms two baseline
results. Figure 2 shows the experimental results on the train-
ing and testing set at different layers.

Table 3. ATIS results with different window sizes

l Window [Method [Layer (proj. dim) [Test Error (%) ‘
1 K-DCNRF 36 (2000) 12.77
3 K-DCN 10 3.83
3 K-DCNRF 34 (16000) 3.81
5 logistic regression - 4.38
5 CRF - 3.42
5 K-DCNRF 76 (20000) 2.78
7 K-DCNRF 88 (30000) 2.74

window size=1 window size=3

13&-—.—__#

o o4
© ©
o 12 o
5 53
Wy [im|
2 !
0 20 40 0 20 40
Layer Layer
window size=5 window size=7
23 o
© ©
o o
52 S
w 1 [im|
0
0 50 100 0 50 100

Layer ’ —+— Train —&— Test ‘ Layer

Fig. 2. Experimental results on the ATIS dataset, where the
abscissa axis is the layer number and ordinate axis is the error
rate.

5.2. TIMIT Experiments

We examine our proposed method on TIMIT phone classifica-
tion tasks. We extract log-mel-spectrogram features with 24
filter banks and add delta and delta-delta information, with a
window size of 25 ms and step size of 10 ms. To include con-
textual information, we concatenate a context of five frames
on each side, with 11 frames in total. Each feature vector
contains 39x11=429 elements. In the training set, we use
all data from 462 speakers, which contains about 1.12 million

samples. We use the standard TIMIT development set of 50
speakers, with 22,488 samples, for cross validation on param-
eters A and o. We test our method on the TIMIT core test set,
consisting of 192 utterances with 57,920 samples. In the ex-
periment, we use 183 senone labels as targets for K-DCNRF.
The 183 target labels correspond to 61 phone units defined in
TIMIT and can be further mapped to 39 phone classes. The
frame-level state classification error is shown in Table 4. K-
DCNREF outperforms its predecessor, DCN [3, 4], and shallow
models [19]. Table 5 shows the detailed results of K-DCN
with 44000 projection dimensions on the TIMIT core test set.

Table 4. Frame-level classification error rates of states

Layer Frame-level

Method (hidden units/proj. dim) f’ltgt; gig‘s’;
SVM B 603
OMP [19] N 489
DCN ([3]) 6 (6000) 4424
DCN ([3]) 6 (7000) 44.04
DSN ([4]) 8 (6000) 43.36
K-DCNRF 4 (44000) 42.87

Table 5. Detailed results of K-DCNRF (projection dimen-
sion=44000) for frame-level classification error on the TIMIT
core test set.

Frame-level Frame-level Frame-level
Layer | Phone Err.(%) Phone Err.(%) State Err.(%)
(39 classes) (61 classes) (183 classes)

1 37.49 43.72 54.97

2 28.74 34.39 45.11

3 26.77 32.29 42.97

4 26.60 32.20 42.87

5 26.58 32.24 43.13

6. CONCLUSION

This paper described a method for efficiently training and test-
ing kernel deep convex networks (K-DCN) using the Bochner
Fourier-space sampling approximation of an RBF kernel. The
computational savings afforded by this approach, enabled the
application of K-DCN to solve classification tasks with on the
order of a million or more training vectors. Training sets this
large were impractical using the previous approaches. Eval-
uating on the task of frame-level state classification on the
TIMIT data with about 1.12 million training samples, we used
the proposed approach to reduce the error rate by 29% com-
pared to an SVM. Since the Bochner approximation allows
significant reduction in the computational complexity of a K-
DCN, this approach will facilitate future work aiming to ap-
ply the K-DCN to large vocabulary speech recognition. In
addition to using the approximated linear kernel, other ker-
nel functions such as multilayer kernel machine [20] can be
investigated in the K-DCN framework.

3146

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

7. REFERENCES

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mo-
hamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition,” IEEFE Signal
Processing Magazine, vol. 29, pp. 82-97, Nov. 2012.

G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition,” IEEE Transactions on

Audio, Speech, and Language Processing,, vol. 20, no.
1, pp. 3042, Jan. 2012.

L. Deng and D. Yu, “Deep convex network: A scalable
architecture for speech pattern classification,” in Inter-
speech, 2011.

L. Deng, D. Yu, and J. Platt, ‘“Scalable stacking and
learning for building deep architectures,” in Intenational
Conference on Acoustics, Speech, and Signal Process-
ing, 2012.

L. Deng, G. Tur, X. He, and D. Hakkani-Tur, “Use of
kernel deep convex networks and end-to-end learning
for spoken language understanding,” in IEEE Workshop
on Spoken Language Technology, 2012.

C. M. Bishop, Pattern Recognition and Machine Learn-
ing (Information Science and Statistics), Springer-
Verlag New York, Inc., 2006.

C. J.C. Burges and B. Scholkopf, “Improving the ac-
curacy and speed of support vector machines,” in
Advances in Neural Information Processing Systems
(NIPS). 1997, pp. 375-381, MIT Press.

G. Baudat and F. Anouar, “Feature vector selection and
projection using kernels,” Neurocomputing, vol. 55, pp.
21-38, 2003.

D. Achlioptas, F. McSherry, and B. Schlkopf, “Sam-
pling techniques for kernel methods,” in Advances in
Neural Infomration Processing Systems (NIPS), 2001,
pp. 335-342.

P. Drineas and M. W. Mahoney, “On the Nystrom
method for approximating a gram matrix for improved
kernel-based learning,” Journal of Machine Learning
Research, vol. 6, pp. 2153-2175, Dec. 2005.

S. Kumar, M. Mohri, and A. Talwalkar, “Ensemble
Nystrom method,” in Advances in Neural Infomration
Processing Systems (NIPS), 2009.

A. Rahimi and B. Recht, “Random features for large-
scale kernel machines,” in Advances in Neural Infomra-
tion Processing Systems (NIPS), 2007.

3147

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

C. Cortes, M. Mohri, and A. Talwalkar, “On the im-
pact of kernel approximation on learning accuracy,” in
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010.

W. Rudin, Fourier Analysis on Groups,
Interscience, 1994.

Wiley-

A. Singh, N. Ahuja, and P. Moulin, “Online learning
with kernels: Overcoming the growing sum problem,”
in IEEE Workshop on Machine Learning for Signal Pro-
cessing (MLSP), 2012.

G. Tiir, D. Hakkani-Tiir, and L. Heck, “What’s left to
be understood in atis,” in Proc. of IEEE SLT Workshop,
2010.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa, “Natural language pro-
cessing (almost) from scratch,” Journal of Machine
Learning Research, 2011.

C. Raymond and G. Riccardi, “Generative and discrim-
inative algorithms for spoken language understanding,”
in Proc. of Interspeech, 2007.

O. Vinyals and L. Deng, “Are sparse representations
rich enough for acoustic modeling?,” in Proceedings of
INTERSPEECH, 2012.

Y. Cho and L. K. Saul, “Kernel methods for deep learn-
ing,” in Advances in Neural Infomration Processing Sys-
tems (NIPS), 2009.

