
DISTRIBUTED ONLINE LEARNING OF THE SHORTEST PATH
UNDER UNKNOWN RANDOM EDGE WEIGHTS

Pouya Tehrani, Qing Zhao

Department of Electrical and Computer Engineering
University of California, Davis, CA 95616,

{potehrani,qzhao}@ucdavis.edu

ABSTRACT
We consider the distributed shortest path problem in

an undirected graph where the edge weights are random
variables with unknown distributions. The objective is to
design a distributed online learning algorithm to find the
shortest path from a source node to a destination node
where each node only knows its neighbors but not the
entire network topology. The performance of the learning
algorithms is measured by regret defined as the additional
cost incurred over a time horizon of length T when compared
to a centralized shortest path algorithm carried out under
known edge weight distributions. We propose a distributed
learning algorithm that achieves a regret logarithmic with the
number of packets and polynomial with the network size.
The same order with time and network size holds for the
message complexity of the proposed algorithm. This result
finds applications in cognitive radio and ad hoc networks
under unknown and dynamic communication environments.

Index Terms—Shortest path problem, multi-armed bandit,
distributed Bellman-Ford algorithm, cognitive radio.

I. INTRODUCTION

Consider a network modeled by an undirected graph. The
weight of each edge is given by i.i.d. realizations (over time)
of a random variable with an unknown distribution. The
objective is to find the shortest path from a source to a
destination node with no prior knowledge on the network
topology or the distributions of the edge weights. Through
local information exchange with its neighbors, each node
(including the source node) decides which neighbor to route
the current packet to, aiming at minimizing the expected total
cost of the resulting path by learning from past observations
of its outgoing edges.

I-A. Distributed Online Learning of the Shortest Path

A centralized version of the above problem can be directly
cast as a classic multi-armed bandit (MAB) problem. In the
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classic MAB [1]–[5], there are N independent arms. At each
time, a player chooses one arm to play. An arm, when played,
incurs i.i.d. random cost drawn from an unknown distribu-
tion. The performance of a sequential arm selection policy is
measured by regret, defined as the total additional cost over
a time horizon of length T when compared to an omniscient
player who knows the cost model and always plays the best
arm. Any policy with regret growing sublinearly with T
achieves the same average performance as the omniscient
player over an infinite horizon, and the slower the growth
rate of the regret, the faster the convergence of the average
performance to the optimal. It has been shown by Lai and
Robbins that the minimum regret growth rate is logarithmic
with time [1]. Since arms are assumed independent under
the classic model, observations from one arm do not provide
information about other arms. The optimal regret thus grows
linearly with the number of arms.

It is not difficult to see that learning the shortest path
can be considered as a classic MAB problem by treating
each path from the source to the destination as an arm.
Consequently, any MAB policy can be applies to achieve
centralized learning of the shortest path. There are, however,
two main challenges in such an approach. First, this approach
yields poor performance with a regret growing linearly with
the number of paths, thus, in the worst case, exponentially
with the network size (in terms of the number of edges). Sec-
ond, a distributed implementation under such an approach is
difficult, if not impossible. In particular, all classic MAB
policies rely on the number of times that each arm has
been played to balance the tradeoff between exploration and
exploitation. In a distributed setting where each node only
interacts and observes its neighbors, an individual node does
not have the global information on how many times a specific
path from the source to the destination has been used for
routing.

The key to the first challenge lies in the dependencies
among paths that share common edges. These dependencies
can be exploited in learning to achieve a regret order that is
polynomial, rather than exponential, with the network size.
To achieve a distributed balance between exploration and
exploitation, our approach is to identify the least traversed
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edge in the network through local information exchange and
ensure sufficient exploration of the currently least traversed
edge at any given time. Based on these two key ideas,
we propose a distributed learning algorithm referred to
as Distributed Bellman-Ford with Learning (DBFL). The
proposed algorithm achieves a regret logarithmic with time
and polynomial with the network size. The same order with
time and network size holds for the message complexity of
the proposed algorithm.

This work applies to general distributed shortest path
problems under random and unknown edge weights. In
the context of communication networks, it applies to dis-
tributed shortest path routing in an unknown and dynamic
environment. A specific application example is cognitive
radio [6] where secondary users communicate by exploiting
temporally and locally unused channels in the presence
of a coexisting primary system. The availability of a link
between two secondary users depends on the communication
activities of nearby primary users which is in general random
with a distribution unknown to the secondary users. As a
consequence, the delay on each communication link can
be thought of as a random variable with an unknown
distribution. The shortest path here is thus the path with
the smallest expected delay (intuitively, the path consisting
of links that experience less primary traffic).

I-B. Related Work

Several policies exist for the classic MAB with inde-
pendent arms [1]–[4]. These policies achieve the optimal
logarithmic regret order for certain specific light-tailed
cost/reward distributions. In particular, Auer et al. proposed
in [3] the so-called UCB policy that achieves the logarithmic
regret order for all distributions with bounded support. In
[7], [8], the UCB policy was extended to all light-tailed
distributions. In [5], a learning algorithm that achieves the
optimal logarithmic regret order for all light-tailed distribu-
tions and sublinear regret order for heavy-tailed distributions
was proposed.

For the weight minimization problem, most of the existing
work focuses on deterministic and known edge weights [9]–
[16]. Centralized learning of the shortest path has been
considered in the literature [17]–[19]. In particular, in [17],
it is assumed that the link state random variables have
bounded support and each individual link is observable to
a central controller. An online learning policy based on the
UCB policy in [3] was developed that achieves O(m4 log T )
regret where m is the number of edges. [18], considers a
more general observation model where only the total cost
of a path, rather than the cost of each edge, is observed.
An online learning algorithm was proposed that achieves
O(md3 log T ) regret for any light-tailed distributions, where
d is the dimension of the path set that is upper bounded by
m. This algorithm also applies to heavy-tailed distributed
with a regret that is linear in m and sublinear in T (with

the sublinear rate depending on the highest order of the
finite moment of the weight distributions). In [19], the
problem was addressed under an adversarial bandit model
in which the link costs are chosen by an adversary and
are treated as arbitrary bounded deterministic quantities. An
algorithm was proposed to achieve regret sublinear with time
and polynomial with the network size. These centralized
learning algorithms do not apply to the distributed shortest
path problem considered in this paper. Opportunistic routing
under unknown local broadcast models was considered in
[20], [21]. While the shortest path problem aims to find a
fixed path with the least expected cost and has applications
beyond wireless networks, opportunistic routing exploits the
local broadcast nature of the wireless links and aims to
determine the next relay node based on specific realizations
of the wireless links. It thus has a different scope from the
problem addressed in this paper.

II. PROBLEM STATEMENT

Consider an undirected graph G(V, E) where V is the
set of nodes and E the set of edges. The source node
S ∈ V aims to communicate with the destination node
F ∈ V through the network (graph) G. For every edge
e ∈ E there is a corresponding random weight W (e) with
an unknown probability distribution. It is assumed that edge
weights W (e) have a bounded support in [dmin, dmax] with
dmin > 0.

Each node i ∈ V knows only its neighbors N (i), but not
the entire network topology. When a node i routes a packet
to one of its neighbors through an edge e, it will observe
a realization of the random weight w(e). For each packet
t generated by the source S, it is routed to the destination
F through distributed decisions made at each intermediate
node. Let C∗ be the expected total cost of the shortest path
and Cπ(t) is the realized cost of the path selected for packet
t by policy π. The regret of a policy π is given by

Rπ(T ) = TC∗ − Eπ[

T∑

t=1

Cπ(t)], (1)

where Eπ denotes expectation with respect to the random
process induced by policy π.

III. DISTRIBUTED BELLMAN-FORD UNDER
KNOWN WEIGHTS

In this section, we review the distributed Bellman-Ford
algorithm for finding the shortest path under known de-
terministic edge weights. The basic idea of the distributed
Bellman-Ford algorithm constitutes one component of the
proposed DBFL. One new result we developed in this section
is an upper bound on the converge time of the distributed
Bellman-Ford (see Lemma 1). This result is needed in
analyzing the regret performance of DBFL in Sec. IV-B.

When the edge weights are known deterministic values
with dmin < {dij}ij∈E < dmax, the distributed version of
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the Bellman-Ford algorithm can be used [22] to find the
shortest path. In the distributed asynchronous Bellman-Ford
algorithm, the initial distance Di from each node i to the
destination, can be any arbitrary value. This would elimi-
nated the need for initial synchronization at the beginning
of the algorithm. The algorithm requires that nodes transmit
new values of their estimated distance Di to their neighbors
from time to time. Then based on any new values of Dj

received from its neighbors, node i updates Di using

Di
∆
= min

j∈N (i)
[dij + Dj ]. (2)

Lemma 1: Let TDBF be the convergence time (the num-
ber of messages that needs to be exchanged for convergence)
of the distributed Bellman-Ford. Then we have

TDBF ≤
dmax

dmin
|V |. (3)

Proof: omitted due to space limit.

IV. DISTRIBUTED BELLMAN-FORD WITH
LEARNING

IV-A. The DBFL Algorithm

In this section, we propose a distributed learning algorithm
for the shortest path problem with unknown random weights.
Referred to as DBFL (Distributed Bellman-Ford with Learn-
ing), this algorithm partitions the sequence of packets gener-
ated at the source into two types: the exploration packets and
the exploitation packets. The exploration packets are routed
through the currently least traversed edge in the network
to ensure sufficient learning of all edges in the network.
The exploitation packets are routed through the shortest path
determined by the distributed Bellman-Ford using the current
empirical mean of each edge weight. Specifically, let E(t)
denote the index set of the exploration packets up to (and
possibly including) the tth packet. Let nij(t) denote the
number of times that edge i ↔ j has served as a relaying
link for the packets in E(t). Define

l(t − 1)
∆
= min

{i↔j}∈E
nij(t − 1) (4)

as the least traversed link before the transmission of packet
t. Consider packet t. If t /∈ E(t), then packet t is routed
opportunistically based on the shortest path determined by
the distributed Bellman-Ford computed from the current
empirical mean of each link weight. If t ∈ E(t), the source
node adds an exploration header to packet t and routes
the packet through the least traversed link l(t − 1)(it will
become clear later how the least traversed link is identified
in a distributed manner). After reaching the least traversed
link l(t − 1), the exploration header is removed by the end
node of l(t − 1) and the packet is treated as a regular
exploitation packet and is relayed to the destination. After
the transmission of each exploration packet, a distributed
algorithm, referred to as LTE as detailed in Fig. 2, is carried

out to identify the new least traversed link and the path to
reach this link from the source, which will be used to route
the next exploration packet. At the same time, the distributed
Bellman-Ford algorithm is carried out to find the shortest
path using the sample mean as the current estimate of each
edge weight. The resulting path will be used for all the
upcoming exploitation packets until it is updated after the
transmission of the next exploration packet. An illustration
of the distributed learning algorithm is given in Fig. 1.

DBF and LTE have converged

t = 1
T

Exploitation

Exploration
DBF and LTE are carried out

Fig. 1. The DBFL Policy

Note that we do not require a node knows whether an
exploration packet has been delivered in order to start the
distributed LTE and the distributed Bellman-Ford algorithms.
The local information exchange for these algorithms will
be initiated when a node sees a change in its current
local information (e.g., an increase in nij after relaying an
exploration packet). Furthermore, the exploitation packets
are routed based on the current Bellman-Ford at each node
without assuming its convergence. As a consequence, the
algorithm is fully distributed; each individual node does
not need to maintain a global count on the number of
exploration packets that have been delivered (except the
source) or to know whether its current local information
reflects convergence.

We point out that in DBFL, learning is carried out only
based on observations obtained during the transmissions of
the exploration packets. As shown in Theorem 1, this is
sufficient to achieve the optimal logarithmic regret order with
a computational complexity that also grows only logarithmi-
cally, since the edge weight estimation and the distributed
Bellman-Ford algorithm only need to be carried out after the
transmission of each exploration packet. The algorithm can,
of course, also learn from the observations obtained during
the transmissions of the exploitation packets. This results in
a better leading constant in the logarithmic regret at the price
of higher computational complexity.

IV-B. Analysis of Regret and Message Complexity

An important design parameter in DBFL is the number
of exploration packets in a sequence of T packets generated
by the source. The cardinality of E(T ) (denoted by |E(T )|)
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Finding the Least Traversed Edge (LTE)
• Initialization:

Each node i (i ∈ Ω− {N}) sets nij = mj = 0
for each j ∈ N (i).

• Local Updates and Exchanges at Node i:
When any of the following events occurs:

– nij increases by one;
– node i receives a new value of mj from a

neighbor j that is bigger than the current stored
value of mj .

then
– update mi and the exploration neighbor oi:

mi
∆
= min

j∈N (i)
nij

oi
∆
= arg min

j∈N (i)
nij (5)

– send the new values (if changed) of nij or mi

or both to neighbors.
When the following event occurs:

– node i receives a new value of mj from a
neighbor j that is smaller than the current stored
values of both mj and mi.

then
– update mi with the new value of mj ; set oi = j.
– send the new value of mi to neighbors.

Fig. 2. The distributed LTE algorithm for finding the least
traversed edge.

balances the tradeoff between exploration and exploitation.
It is not difficult to see that the regret order is lower bounded
by |E(T )|. Nevertheless, the sequence of exploration packets
needs to be chosen sufficiently dense to ensure effective
learning of the expected weights of links. The key issue
here is to find the minimum cardinality of the exploration
packets that ensures the additional cost caused by incorrectly
identified node routing priorities during the transmissions
of the exploitation packets having an order no larger than
|E(T )|. As shown in the theorem below, |E(T )| can be
set to a logarithmic order with T , leading to the optimal
logarithmic regret order of the learning algorithm DBFL.

Theorem 1: Let L ≤ |E| be an upper bound on the
maximum number of edges that contributes to a path and c be
an arbitrary nontrivial lower bound on the difference between
the expected cost of the shortest path and the second shortest
path. Set G = (2L(dmax−dmin)2d2

c2 + 1
log 2 )|E|. For each

packet t > 1, if |E(t− 1)| < G log t, then include t in E(t).
Under this sequence of exploration packets, policy DBFL
achieves regret O(G|V | log T ) which is logarithmic with
the number of packets and polynomial with the number of

unknowns (worst case O(|E|4|V | log T )). Also the message
complexity of the proposed policy is O(|V |2G log T ).

Proof: Here we only sketch the proof due to space limit.
We represent each path k as a vector pk with |E| entries
consisting of 0’s and 1’s representing whether or not an edge
is on the path. The vector space of all paths is embedded
in a d-dimensional (d ≤ |E|) subspace of R|E|. The cost of
path k for packet t is thus given by the linear function

Ck(t) =< [W1(t), W2(t), . . . , W|E|(t)], pk > .

.
Regret of the policy DBFL is incurred during both ex-

ploration and exploitation. In the horizon of T packets,
the policy spends G log T packets on exploration. Therefore
regret incurred by the exploration packets is O(G log T ).

In the exploitation, the regret consists of two parts: regret
when the Bellman-Ford recursion has not converged, and
regret when a path different than the actual shortest path
is chosen after convergence of the Bellman-Ford. From
Lemma 1, we know that the distributed Bellman-Ford con-
verges in O(|V |) and since this recursion should be renewed
after each exploration packet is sent through the network, the
regret incurred in this case is O(G|V | log T ).

It only remains to consider the regret incurred by the
exploitation packets when the Bellman-Ford recursion has
converged. Based on the structure of the exploration, after
N exploration packets for each edge e ∈ E we have
ne ≥ ⌊ N

|E|⌋. Therefore ne(t) ≥ ⌊G log t

|E| ⌋. Based on Cher-
noff bound and taking advantage of the network structure
(using barycentric spanner basis of the network which is
represented by a vector space in R|E| as explained above)
we can show that the number of times that the non-optimal
path is chosen in the exploitation phase when the recursion
has converged up to time t is bounded above by 2d logT .
Consequently the regret for the exploitation after Bellman-
Ford convergence is O(d log T ).

Regarding the message complexity, there are total of
G log T exploration phases and at the end of each one the
distributed Bellman-Ford and the LTE algorithms are run.
Those algorithms both have O(|V |2) message complexities
and there are total G log T of them. Therefore the message
complexity of the proposed policy is O(|V |2G log T ).

V. CONCLUSION

In this paper a shortest path problem is considered where
the edge weights are random variables with unknown distri-
butions. A dynamic distributed learning algorithm (DBFL)
is developed that achieves regret order logarithmic with the
time horizon length and polynomial with the network size.
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