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ABSTRACT

This paper presents an effective method for evaluation of the ratio-
nal kernels represented by finite-state automata. The described algo-
rithm is optimized for processing speed and thus facilitates the usage
of state-of-the-art machine learning techniques like Support Vector
Machines even in the real-time application of speech and language
processing, such as dialogue systems and speech retrieval engines.
The performance of the devised algorithm was tested on a spoken
language understanding task and the results suggest that it consis-
tently outperforms the baseline algorithm presented in the related
literature.

Index Terms— Finite-state machines, Kernels, Support Vector
Machines, Natural language processing

1. INTRODUCTION

The effectiveness of many speech and natural language processing
systems benefits greatly from the usage of state-of-the-art machine
learning techniques such as Support Vector Machines (SVMs).
However, there are several issues that have to be dealt with when
designing such classification algorithms. First, the speech and
language processing tools are often designed in a “cascade” fash-
ion where the (generally ambiguous) output of one module – e.g.
speech recognizer – is passed into the next one, for example natural
language understanding engine. Those intermediate results often
constitute a more structure form than fixed-size feature vectors for
which the original classification methods were devised. Typically,
they take the form of a lattice represented by an acyclic weighted
finite-state acceptor (WFSA) [1].

The theoretically well-founded algorithm for computing the
kernel function1 between two acyclic WFSAs was introduced in [2].
However, specifically in the case of SVM usage, the pairwise cal-
culation between classified lattice and lattices representing the
support vectors (which can, by definition, cover the whole train-
ing set) becomes very inefficient. Therefore we have designed a
new method that capitalizes on effective optimization methods for
weighted finite-state transducers (WFSTs) available in the OpenFST
library [3], especially determinization and minimization algorithms.

1An operation essential for efficient usage of many classification algo-
rithms including SVMs.

2. PAIRWISE KERNEL COMPUTATION

2.1. Basic definitions

Using a notation introduced in [3], we can define a semiring as a
5-tuple (K,⊕,⊗, 0̄, 1̄) whereK denotes the set of values, operation
⊕ is associative and commutative with identity element 0̄; operation
⊗ is associative with identity element 1̄, ⊗ distributes over ⊕ and 0̄
is an annihilator for ⊗, i.e. a⊗ 0̄ = 0̄⊗ a = 0̄ for all a ∈ K.

Then a weighted finite-state transducer (WFST) over a semiring
K is an 8-tuple T = (A,B, Q, I, F,E, λ, ρ) where A denotes the
finite input alphabet of the transducer, B is the finite output alphabet,
Q is the finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q
is the set of final states, E ⊆ Q× (A∪ {ε})× (B ∪ {ε})×K×Q
is a finite set of transitions, λ : I → K is the initial weight function
and ρ : F → K is the final weight function; ε denotes an empty
string.

For a given transition e ∈ E, let us denote by p[e] the origin
(previous) state of the transition e; n(e) then denotes its destina-
tion (next) state; i[e], o[e] and w[e] further denote the input sym-
bol, output symbol and weight of the transition e, respectively. The
path π = e1 . . . ek is defined as a sequence of consecutive transi-
tions such that n[ei−1] = p[ei], i = 2, . . . k. Functions n, p and
w can then be extended to paths – n[π] = n[ek], p[π] = p[e1] and
w[π] =

⊗k
i=1 w[ei]. The function w can be further extended to an

arbitrary set of paths M as w[M ] =
⊕

π∈M w[π].
Next, let us denote by P (q, q′) the set of paths from q to

q′ and by P (q, x, y, q′) the set of paths from q do q′ with input
label x ∈ A∗ and output label y ∈ B∗. Again, these defini-
tions can be extended to subsets of states R,R′ ⊆ Q as fol-
lows: P (R,R′) =

⋃
q∈R,q′∈R′ P (q, q′) and P (R, x, y,R′) =⋃

q∈R,q′∈R′ P (q, x, y, q′).
The transducer T then assigns to any pair (x, y) ∈ A∗ ×B∗ the

weight defined as

T (x, y) =
⊕

π∈P (I,x,y,F )

λ [p[π]]⊗ w[π]⊗ ρ [n[π]] (1)

If P (I, x, y, F ) = ∅, i.e., if there is no successful path from ini-
tial to final state labeled with (x, y), the T (x, y) = 0̄. The weighted
finite-state acceptor can be viewed as a special case of WFST with
identical input and output alphabet A that defines an identical rela-
tion between input and output symbols, i.e., i[e] = o[e] ∀e ∈ E.
This representation simplifies for example the definition of the com-
position of transducer and acceptor (see below) and is also in this
form implemented in [3]. We will also use the term finite-state au-
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tomaton in the paper in cases when the explicit distinction between
transducer and acceptor is not necessary.

Now let us briefly introduce some of the operations with WF-
STs that will be utilized in the algorithms below. The union of
two transducers T1(., ) and T2(., .) is defined as T1 ⊕ T2(x, y) =
T1(x, y) ⊕ T2(x, y); the concatenation of transducers is defined as
T1⊗T2(x, y) =

⊕
x=x1x2,y=y1y2

T1(x1, y1)⊗T2(x2, y2) and the
inverse of a transducer T (., .) is defined by T−1(x, y) = T (y, x).
The composition of T1(., ) and T2(., .) is defined as T1 ◦T2(x, y) =⊕

z T1(x, z) ⊗ T2(z, y) and, finally, the input and output projec-
tion of a transducer is defined as Π1(T )(x) =

⊕
y T (x, y) and

Π2(T )(y) =
⊕

x T (x, y), respectively. [1]
The methods introduced in this paper also take an advantage

from the efficient optimization algorithms that change the topology
of the transducer to optimize their computational efficiency while
maintaining the original transducer relation. Those are the ε-removal
(rmeps) removing all the transitions e with i[e] = o[e] = ε [4], de-
terminization (det) creating the equivalent transducer such that for
each state q ∈ Q and each symbol a ∈ A there is at most one tran-
sition leaving the state q labeled with the input symbol a [1] and
minimization (min) resulting into the equivalent transducer with the
minimum number of states [5].

2.2. Rational kernels

A kernel over the sets X and Y is a function K : X × Y → < such
that X,Y 6= ∅. A rational kernel is then a kernel defined over sets
of strings or weighted automata.

More precisely, a kernel K over A∗ × B∗ is called rational if
there exists a weighted transducer S = (A,B, Q, I, F,E, λ, ρ) over
the semiringK and a function ψ : K→ < such that for all x ∈ A∗
a y ∈ B∗:

K(x, y) = ψ (S(x, y)) (2)

The kernel K is then defined by the pair (ψ, S) where ψ is an arbi-
trary function mappingK to < [2].

Cortes et al. further show in [2] that the definition of rational
kernels can be extended to kernels over weighted automata and that
the kernel K over the automata A and B can be computed using a
composition operation:

K(A,B) = ψ (w[A ◦ S ◦B]) (3)

under the condition thatA andB are acyclic weighted automata over
a closed semiringK.2

Many machine learning techniques (including SVMs) require
kernels satisfying Mercer’s condition, or equivalently, kernels that
are positive definite symmetric (PDS). It has been proven in [2] that
for an arbitrary weighted transducer T = (A,B, Q, I, F,E, λ, ρ)
which satisfies the condition that a composition S = T ◦ T−1 is
regulated3, the pair (ψ, T ◦ T−1) defines a PDS rational kernel over
A∗ ×A∗.

2.3. N -gram kernels over lattices

The rational kernels are, broadly speaking, designed to evaluate
some kind of a similarity measure between weighted automata. In
many NLP applications, we need to assess the similarity between

2The tropical semiring fulfills the definition of the closed semiring. In the
case of the probability semiring, the Eq. 3 can be used only when A, B and
T represent probability distributions.

3A transducer is said to be regulated if its transduction weight defined by
the Eq. 1 is well-defined and inK for any pair (x, y).

strings (documents, queries, utterances) or, even more frequently,
between more complex representations of those strings emerging
from the inherent uncertainty present in the NLP algorithm out-
comes. Those representation often take form of a lattice, i.e. acyclic
WFSA. One of the plausible measures of similarity between lattices
is the number of shared n-grams (or, more precisely for the proba-
bilistic setting, the expectation of the number of shared n-grams).
As it turns out, the transducer T realizing this measure can be quite
straightforwardly defined as

Tn = (A× {ε})∗ ⊗ (⊕x∈A{x} × {x})n ⊗ (A× {ε})∗ (4)

where ∗ denotes the Kleene closure and n represents the n-fold con-
catenation (in this case, of the union of all symbols from the input
alphabet). The more illustrative graphical representation of Tn can
be found in [2]. The kernel computing the n-gram similarity over
two lattices A and B is then defined as

Kn(A,B) = ψ(w[A ◦ Tn ◦ T−1
n ◦B]) (5)

Now suppose that we want to classify an unknown lattice X using
the SVM algorithm while having a training set T consisting of l lat-
tices. It means that we need to evaluateKn(X,Uj) for j = 1, · · · , l
as we do not know which training set examples will constitute the
support vectors. In other words, we have to perform the following
operations for each training sample Uj :

1. Construct the composite transducer Cj = L ◦ Rj where L
is the determinized composition of classified lattice with the
transducer Tn (L = det [rmeps Π2(X ◦ Tn)]) and Rj is the
determinized composition of the training set lattice with T−1

n

(Rj = det [rmeps Π1(T−1
n ◦ Uj ]) – both those partial com-

position can be precomputed before iterating over the training
set.

2. Compute w[Cj ] using the shortest distance algorithm [6].
Since the training sets T quite commonly contain thousands and
even tens of thousands of examples, this baseline algorithm turns
out to be rather inefficient.

3. OPTIMIZED KERNEL COMPUTATION ALGORITHM

The design of our optimized algorithm was guided by the idea that
many n-grams have to be shared across the training set lattices.
Therefore, if we were able to devise a clever way of merging the
entire training set into a single WFSA while maintaining the infor-
mation about the original lattice identities, the WFST optimization
algorithms would conflate the shared paths (n-grams) and the whole
kernel computation described in Section 2.3 would be essentially
reduced to a single composition of transducer representing the clas-
sified lattice and a large but minimized transducer representing the
whole training set. Technically, the layout of the combined “training
set” transducer was inspired by the construction of the factor trans-
ducer described in [7].

The resulting optimized algorithm works as follows:
1. Create the composite transducers Rj = T−1

n ◦ Uj for j =
1, · · · , l

2. Add the training set indexes 1, · · · , l into the symbol alpha-
bet A and concatenate all the transducers Rj projected on
the input with a simple acceptor I(j) = {j} × {j}, creating
Ej = Π1(Rj)⊗ I(j) for j = 1, · · · , l. In other words, I(j)
adds the identifier of the individual training set lattices into
the combined transducer and ensures the preservation of the
lattice identities throughout the subsequent WFST optimiza-
tion process.
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Fig. 1. Example of the combined transducer R representing the en-
tire training set (two utterances). R is defined over the real semiring,
the kernel was defined using (ψI , T3) where ψI is an identity func-
tion.

3. Take the union of all extended acceptorsEj , j = 1, · · · , l and
perform ε-removal, determinization and minimization of the
resulting acceptor – i.e., create R̄ = min[det[rmeps

⊕
j Ej ]].

The R̄ is now a minimal WFSA over A ∪ {j}lj=1.

4. Convert the acceptor R̄ into a transducerR by first initializing
R with R̄4 and then modifying all transitions e as follows:

• i[e] = ε if i[e] ∈ {j = 1, 2, . . . , l}
• o[e] = ε otherwise

The evaluation of the kernel function over the classified lattice and
the whole training set is consequently reduced to a single composi-
tion C = L ◦R and computing of the Kn(X,Uj) values by travers-
ing the transducer C such that:

Kn(X,Uj) = ψ(
⊕

π∈P (I,F ):o(π)=j

λ[p[π]]⊗ w[π]⊗ ρ[n[π]]) (6)

An example of the optimized combined transducer R created by
running the algorithms described above on the training set containing
just two phoneme lattices U1 and U2 is given in Figure 1.

4. ALGORITHM EVALUATION

We evaluated the presented algorithm on a spoken language under-
standing task. In this task, the input utterance represented by a lattice
X is classified using a set of SVM classifiers into semantic classes
called semantic tuples. This discriminative model called Semantic

4Remember that the acceptor is represented as a transducer with i[e] =
o[e] ∀e ∈ E

Word lattices Phoneme lattices
mean std mean std

# of states 8.3 10.4 37.1 53.0
# of trans. 11.1 20.3 47.1 84.1
# of paths 102.3 1200.8 282.8 1681.6

Table 1. Characteristics of HHTT lattices (mean and standard devi-
ation) computed over 56k lattices.
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Fig. 2. Dependency of the size of transducer R on the number of
training utterances |T |, |Q| denotes the number of states, |E| the
number of transitions.

Tuple Classifiers (STC) was described in [8]. In our research we
were interested in the use of both the word lattices and phoneme
lattices to classify the semantics of an utterance. The original STC
model used a feature vector composed from lexico-syntactic features
computed from the word sequence (one best hypothesis). The al-
gorithm for the fast computation of rational kernels was developed
to evaluate directly the kernel function between X and the whole
training set Uj instead of computing the explicit feature vector rep-
resentation. The rapid computation is necessary to allow real-time
processing of utterances and to provide a natural dialog.

Word lattices Phoneme lattices
Operation [ms] [%] [ms] [%]

A = X ◦ T 0.513 11.56% 0.449 0.54%
B = Π2(A) 0.027 0.61% 0.135 0.16%
C = rmeps B 0.107 2.41% 2.290 2.77%
L = det C 0.038 0.86% 0.302 0.37%
L ◦R 0.630 14.20% 18.079 21.86%
traverse L ◦R 3.121 70.36% 61.446 74.30%
Σ 4.436 100.00% 82.701 100.00%

Table 2. Mean computational times of partial operations during the
rational kernel functions evaluation. Absolute and relative values,
word and phoneme lattices, |T | = 2 · 104.

We experimentally evaluated the performance of the algorithm
on the described task. We varied the size of the training set. The
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Fig. 3. Medians of computational times required to evaluate |T | kernel functions between one test utterance and |T | training utterances.
Utterances were represented using word and phoneme lattices. The described algorithm is denoted as fast (solid line), baseline algorithms
were pairwise computation (dashed line) and naive implementation (dotted line). Smaller times are better, logarithmic axes.

computational times required to evaluate Eq. 6 against all training
utterances was measured. The median of the computational time in
dependency on the size of the training set is depicted in Fig. 4. We
used word and phoneme lattices generated from our in-house speech
recognizer [9] and the Human-Human Train Timetable (HHTT) di-
alog corpus [10]. The corpus contains about 56k utterances which
were recognized into word and phoneme lattices. The characteristics
of these lattices are summarized in 1.

For each size of training set, the algorithm was performed 5-
times for randomly chosen training utterances from the whole cor-
pus. 100 utterances were selected as test set during each repetition.
Then for each test utterance the kernel functions between the test
lattice and the lattices from training set were computed and the com-
putational times were measured. In the experiment, we used n-gram
transducer defined by T =

⊕N
n=1 Tn. The automaton T transduces

the output symbols of path from the latticeX into a set of n-grams of
length 1, 2, . . . N . We used N = 5 in the experiments presented in
this paper. The logarithmic semiring and the mapping ψ(w) = e−w

was used in order to ensure the numerical stability of transducer op-
timization algorithms. The kernel K(X,Uj) is then defined by the
tuple (ψ(w), T ).

The performance of the optimized algorithm (solid line) is com-
pared with a pairwise kernel computation (dotted line) and with an
naive algorithm (dashed line). The naive algorithm uses explicit fea-
ture vector representation composed from a sparse feature vector.
The sparse vector contains expected counts of n-grams and the dot
product of these vectors is equivalent to computation of n-gram ra-
tional kernel.

While the pairwise computation is linearly dependent on the
number of training samples, the computational demands of an op-
timized algorithm are growing much more slowly. For the word
lattices and the training set size of 20k utterances, the median of
computational times was only about 3.50ms (4.69 mean). In the
case when the phoneme lattices were used as an input, we achieved
median time of about 69.6ms (86.9ms mean) for 20k utterances.

The Fig. 2 depicts the dependency of the number of states |Q|

and the number of transitions |E| of the transducer R on the number
of training lattices used to construct R.

The asymptotic complexity of the described algorithm is influ-
enced by the fact that input lattices are acyclic automata. Therefore
the asymptotic complexity of partial operations of this algorithm is
better then for a generic automaton. We assume that the transducer
R is precomputed during the training phase. In the case of n-gram
rational kernels, the automaton L is in fact the subset of factor au-
tomaton. The size of this automaton is linear with the size of X and,
moreover, the automaton is constructible in linear time [11]. For a
fixedR, the time and memory complexity of L◦R isO(|QL|·|DL|)
where |DL| is a maximum out-degree of L because the terms depen-
dent on R are just a multiplicative constant [12].

5. CONCLUSION AND FUTURE WORK

The paper presented an optimized algorithm for computing rational
kernels over the acyclic finite state automata. It was experimentally
shown that its speed substantially outperforms the baseline pairwise
computation and, for phoneme lattices and larger word lattice train-
ing sets, also the method that employs explicit evaluation of the dot
product of the feature vectors. The optimized kernel evaluation is
used in a spoken language understanding module [13] employing
SVMs where the reaction time highly influences the dialog system
user experience.

Even though the paper reported the results of experiments per-
formed with an n-gram kernel within a spoken language understand-
ing task, the algorithm should be just as effective with other rational
kernels and in other related tasks. We are currently planning to test
its performance within a topic detection system.
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