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ABSTRACT

When applied to functional magnetic resonance imaging
(fMRI) data, independent vector analysis (IVA) provides su-
perior performance in capturing subject variability within one
group, as compared to the widely used group independent
component analysis (ICA) approach. However, the effec-
tiveness of IVA algorithms in preserving variability between
different groups of subjects has not been studied yet, al-
though it is of great interest in most fMRI studies, especially
for identifying biomarkers for diagnosis of mental disorders.
In this paper, we introduce a methodology that uses graph-
theoretical analysis and statistical analysis for assessing the
ability of IVA algorithms to capture group variability. We
generate multi-subject fMRI-like datasets with increasing
spatial variability for a selected component between two
groups and compare a robust IVA algorithm to group ICA
approach. Our experimental results show that IVA can suc-
cessfully preserve group variability, indicating its potential
in extracting biomarkers across groups of subjects in fMRI
analysis.

Index Terms— IVA, ICA, multi-subject fMRI-like data,
group variability, graph-theoretical analysis

1. INTRODUCTION

Data-driven methods, such as independent component analy-
sis (ICA), have proven very useful for analysis of functional
magnetic resonance imaging (fMRI) data. To achieve a group
analysis by ICA for multi-subject fMRI data, a widely used
procedure [1, 2] is to reshape 4D data and treat the spatial
dimensions as a single dimension first, then concatenate the
images from individual subjects in time, followed by principal
component analysis (PCA) applied on a group level to reduce
data dimension; after a single ICA decomposition, the inde-
pendent components for individual subjects can be obtained
by a back-reconstruction stage [3]. However, since the group-
level PCA step attempts to find a common signal space for all
subjects, this group ICA method using temporal concatena-
tion may impose restrictions on signal distribution, suggest-
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ing difficulties in capturing the inter-subject variability [4, 5]
and possibly for group variability as well.

A more effective solution for group fMRI analysis is
to use independent vector analysis (IVA), which can con-
currently extract independent components from multiple
datasets (e.g., subjects) [6, 7]. In IVA, the components from
a dataset are assumed to be maximally independent of each
other, as in ICA; more importantly, dependence between the
given components from all datasets is maximized simulta-
neously in IVA, which cannot be achieved by separate ICA
of each dataset. Without performing the group-level PCA,
IVA for fMRI demonstrates the capability to preserve signals
that show spatial variability in their hemodynamic responses
across a group of subjects [8].

However, the effectiveness of IVA algorithms in captur-
ing spatial variability between different groups of subjects has
not been studied to date, which is of great interest in various
group TMRI studies, e.g., comparison between healthy con-
trols and patients with mental disorder to identify potential
biomarkers for diagnosis and treatment.

In this work, based on graph-theoretical analysis and sta-
tistical measures we introduce a methodology for assessing
the ability of IVA algorithms to capture group variability. We
generate multi-subject fMRI-like datasets using a recently de-
veloped simulation toolbox [9]. To simulate a typical differ-
ence between the healthy and patient groups found in many
fMRI studies, i.e., the brain network volume changes [10,
11], we introduce increasing spread variability in one selected
component between two groups of subjects during the data
generation stage. We then compare the performance of an
effective and robust IVA algorithm with the group ICA ap-
proach in preserving the introduced group variability.

2. BACKGROUND

2.1. Independent vector analysis

To introduce IVA for fMRI analysis, consider multiple
datasets for K subjects, each denoted as x gk = 1...K,
generated from the following linear mixture model

xM = AWM k= 1,... K
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Fig. 1. (A) Selection of ten original components, labeled by
different colors. We select this set of components to reduce
spatial overlap between component #1 and other components.
(B) Mask (corrected by FDR=0.05) of two-sample -map for
original component #1, to which we introduce group variabil-
ity, in Cases 3-5; then we use this mask to generate ROC
curve for two-sample t-map of the estimated component.

where superscript [-] is the subject index. For the kth subject,

the component vector is denoted as s*! = [sl LSy
where the subscript is the component index and N is the total
number of components. The nth source component vector
(SCV) is constructed by taking each of the nth component
from all K subjects, i.e., s, = [s,[f], e sELk], e sE,K] T.

The goal of IVA is then to find K demixing matrices
WK k= 1,...,K and the corresponding component vector
estimates for each subject, y*! = WKIxI¥1| such that the es-

e Shy

T
timated SCVs, given by y,, = [yEll],...,y,[fq] ,n=1,...,N,
are maximally independent of each other. For the nth SCV
T T
¥n, the element y = (w,[f]) x and (w,[qk]) is the nth
row of Wl TVA decomposition can be achieved by min-
imizing the mutual information among SCVs, i.e., mini-
mizing cost function Zjya = Zi,v:] H(y,) — H(yi,...,¥n8) =
(B HOE) - T(ya)-2K, log [detW!H|-C, where

n=1

is entropy, I(y,) = I (y":...53}) = E{log p(y,) )}

PORD..pOYD)
is the mutual information (MI) within the nth SCV and C is
a constant term that depends only on x¥, k = 1,..., K. This

cost function can be minimized using a parametric model
for the SCV distribution p(y,) (e.g., multivariate Gaussian
or Kotz-type distribution [12]), and an iterative optimization
technique (e.g., gradient descent method). Therefore, by min-
imizing this cost function the dependence among components
within each SCV, 7 (y,), is maximized concurrently.

We use an effective IVA implementation, namely IVA-
GL, achieved by initializing IVA-L [6] with a solution from
IVA-G [7]. IVA-L is an IVA algorithm with multivariate
Laplace prior for SCVs [6] and IVA-G algorithm assumes
multivariate Gaussian for SCV distribution instead [7]. Both
IVA-L and IVA-G follow the above mixing model and cost
function. In IVA-L, the components within each SCV are
assumed to be second-order uncorrelated and hence only
higher-order statistics are exploited; while IVA-G exploits

Table 1: Simulation parameters for all subjects in five cases,
where U and N denote uniform and Gaussian distributions.
Comp., component set; Trans., translation; Rot., rotation.

Group | Case Comp. Trans. Rot. Spread
Case 1 U3,1)
Case 2 U(3,1.8)

Group 1 gzzzi #1 N©02) N(03) gg?g;
Case 5 U(3,8.3)
Case 1-5 #2-10 N(0,2) N(0,3) U(3,1)

Group2 | Case 1-5 #1-10 N(0,2) N(0,3) U(3,1)

%] %] k"

only second-order statistical information by multivariate
Gaussian assumption. Combining second-order and higher-
order statistics, IVA-GL can yield more robust joint blind
source separation than using IVA-L or IVA-G alone [7].

2.2. Graph-theoretical analysis

" An effective way to evaluate the performance of IVA and

group ICA approaches in capturing group variability is to use
graph-theoretical analysis, as applied in many fMRI studies
on groups of subjects [13].

To calculate graph-theoretical metrics, we construct an
undirected graph for each of the K subjects. In the kth
graph, a node represents an estimated component from the
kth subject, yllkl, n =1,...,N; an edge connecting two nodes,

y,[,k] and yyi],n # m, represents the normalized MI between

them [14, 151, defined as 1 - exp (2704 31) € [0, 1)
[16], where I(-;-) is the MI estimated by kernel density
method [17]. A threshold, defined as the percentage of the
strongest edges retained, gradually increases to generate a
number of graphs with different connection densities. At
each threshold, the average clustering coefficient to quantify
the local cliquishness of nodes in the graph is calculated as
x Y En/(Nu(N, = 1)/2) [18], where N, is the number of
edges connected to the nth node and E,, is the number of pairs
of the nth node’s neighbors that are connected to each other.
The obtained value of this metric is also normalized by the
corresponding measure from the comparable random graph
with the same number of nodes and edges as the observed
graph. This metric takes into account relationship of the
component that we introduce group variability with all the
other components and in our experiments, we expect group
differences in this metric when group variability is high.

3. SIMULATION AND STATISTICAL ANALYSIS

3.1. FMRI-like data generation

We generate multi-subject fMRI-like data using a new simula-
tion toolbox, SimTB [9]. Following the linear mixing model,
this toolbox controls the generation of 2D spatial components
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(A) One-sample t-test
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(B) Two-sample t-test
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Fig. 2. Statistical testing of component #1 in three cases: (A)
one-sample t-test for two groups and (B) two-sample 7-test
between two groups.

and time courses by a selected number of parameters. For ex-
ample, the slices of individual components across all subjects
within one group can be rotated, translated, contracted or ex-
panded based on the distributions of relevant parameters.

Total of 10 original components are used, including vi-
sual, frontal, pre-central, ventricle, and anterior white mat-
ter, as shown in Fig. 1. (A). Each spatial component contains
148 x 148 voxels. Gaussian noise with a variance correspond-
ing to a standard contrast-to-noise ratio (CNR) of 2 is added
to each component. Time courses are simulated as the con-
volution of “neural” events with a canonical hemodynamic
response function and scaled to have a peak-to-peak range of
one. We specify the event magnitude of each time course and
control the correlation between all possible pairs of original
time courses to be around a small absolute value (0.2) to en-
sure successful identification of each underlying component.

Various fMRI studies have found significant group differ-
ences in the brain network volumes between the healthy and
diseased brains. For example, cerebral gray matter volumes
are smaller; while ventricle and cerebrospinal fluid volumes
are larger in schizophrenia patients than in healthy controls
[10, 11]. To simulate this typical group difference in the se-
lected brain network, we generate five cases with expected
increasing spatial spread for component #1 in Group 1 (12
subjects) and fix the spread distribution for this component
in Group 2 (12 subjects) for all cases. Hence, the functional
volume difference in component #1 between two groups in-
creases across these cases. For components #2—10, we use
the same set of parameters in both groups and we expect no
significant group differences in these components. The simu-
lation parameters for five cases are shown in Table 1.

3.2. Statistical analysis

To evaluate how well IVA and group ICA preserve the group
variability in the selected component #1, several statistical
measures are calculated. Between two simulated groups, we
perform two-sample 7-test on the estimated component #1 to

(A) Case 2 (B) Case 3
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Fig. 3. ROC curve for two-sample ¢t-map of the estimated
component #1 for IVA-GL and G-Infomax in Cases 2-5.

obtain -map, where the higher the voxel value the more sig-
nificant the group difference in this voxel is. For the origi-
nal component #1, we also obtain the two-sample #-map and
then threshold it (corrected by a false discovery rate (FDR) of
0.05) to create a mask, representing the ground truth of signif-
icant differences between two groups, as shown in Fig. 1. (B).
Using this mask, we generate the receiver operator character-
istic (ROC) curve for the two-sample -map of the estimated
component #1. The number of voxels within the mask (Nj,)
and the number of voxels outside the mask (N,y) are calcu-
lated. At each #-value threshold in the -map of the estimated
component, we compute the number of voxels that fall in and
outside of the mask (Nyye and Ngys). The probability of de-
tection and false alarm are defined as the ratios, Nyye/Nin and
Nrase /Nout, Tespectively. Then the set of these ratios obtained
by varying the ¢-value threshold defines the ROC curve. Ad-
ditionally, we calculate the normalized MI between the two-
sample -maps derived from the estimated and original com-
ponents (both are thresholded for FDR = 0.05) to measure the
statistical similarity between them.

4. EXPERIMENTAL RESULTS

We evaluate the performance of IVA-GL algorithm in captur-
ing group variability and compare with group ICA algorithm
implemented in the group ICA for fMRI toolbox (GIFT,
http://icatb.sourceforge.net). To match IVA-GL,
we use the Infomax algorithm in GIFT with a nonlinear-
ity that corresponds to the Laplace distribution, denoted as
G-Infomax in the remainder of the text.

First, we calculate the normalized MI between the esti-
mated components and their corresponding true components.
For both IVA-GL and G-Infomax across five cases, more than
95% of estimates from all subjects yield high normalized MI
values (> 0.5), hence indicating a good estimation perfor-
mance. For component #1 to which we introduce group vari-
ability, the normalized MI for more than 85% of subjects have
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Table 2: The normalized MI between two-sample 7-map
of the estimated and original component #1. Both t-maps
are thresholded for FDR = 0.05. In Case 1, no voxel
survives after thresholding. The significance of difference
between two algorithms is tested by two-sample 7-test of 20
trials of random subject selection (p < 0.05 for all four cases).

Casel Case2 Case3 Case4 Case)
— increasing group variability—
IVA-GL - 0.43 0.56 0.81 0.88
G-Infomax - 0.37 0.51 0.75 0.83

high value (> 0.6) for both algorithms.

We introduce increasing group variability to component
#1 across five cases and after source separation, we perform
statistical analysis on this component. For the estimation of
component #1, the #-maps from one-sample #-test for two
groups are shown in Fig. 2. (A) and the 7-maps of two-sample
t-test for IVA-GL and G-Infomax are shown in Fig. 2. (B). As
expected, the number and #-value of significant voxels located
at the bottom (the original region subject to increasing spread
variability in component #1) increase as the mean and vari-
ance of spread distribution in Group 1 increase. When there
is no group variability (Case 1), interference from other com-
ponents in the estimated component #1 is less for G-Infomax
than IVA-GL, potentially resulting from the group-level PCA
step in G-Infomax that attempts to find a common signal
space for all subjects. However, as group variability in spread
increases, the estimation of component #1 from IVA-GL
shows less interference from the other components than that
estimated by G-Infomax, as shown by arrows in Fig. 2. (B).

The ROC curves for the two-sample 7-map of component
#1 are shown in Fig. 3. We find that across all cases, IVA-GL
shows a better performance than G-Infomax in terms of ROC
curve. Also, the ROC performance of IVA-GL improves as
group variability increases.

Additionally, we calculate the normalized MI between the
thresholded two-sample -maps of the estimated and original
component #1, as shown in Table 2, an indication of how well
the group differences in the true regions (represented by the
two-sample #-map of the original component) are captured in
the estimated component. Compared to G-Infomax, the two-
sample -map derived from IVA-GL is more similar to the
ground truth.

The graph-theoretical metric of ten estimated components
is shown in Fig. 4. When group variability is high (e.g., Cases
4 and 5), the two simulated groups show larger differences
using IVA-GL estimations and thus have higher accuracy for
the classification of two groups than using G-Infomax estima-
tions, further indicating the performance of IVA-GL in captur-
ing the group differences.

To verify the results we obtained, we run IVA and group
ICA algorithms ten times with random initializations (in IVA-
GL, we randomly initialize IVA-G algorithm). For all our
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Fig. 4. The average clustering coefficient obtained using ten
true components and ten estimated components from IVA-GL
and G-Infomax. The introduced group variability in compo-
nent #1 increases from Case 2 to Case 5.

simulations, we obtain similar results with respect to the per-
formance of the two algorithms in capturing group variabil-
ity. We also consider an extreme case that we only introduce
spread differences between two groups, but within group we
do not include subject variability. In such a case, IVA-GL
performs better than G-Infomax in terms of graph-theoretical
and statistical measures.

5. CONTRIBUTIONS AND CONCLUSIONS

In this paper, we show that IVA not only preserves inter-
subject variability with one group of subjects, as shown in
[8], but that it also is effective in capturing variability between
different groups of subjects, which is especially important for
group studies. We generated multi-subject fMRI-like datasets
with increasing spatial variability between two groups. Using
graph-theoretical analysis and several statistical measures, we
compared a robust IVA algorithm to the widely used group
ICA approach. Our experimental results show that IVA can
successfully preserve group difference when there is group
variability and the performance of IVA improves as group
variability increases, indicating the promising use of IVA for
studying group differences to identify biomarkers for mental
disorders and between different conditions, such as different
cognitive tasks, age, gender variables or during treatment.
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