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ABSTRACT

Multi-view hashing seeks compact integrated binary codes which
preserve similarities averaged over multiple representations of ob-
jects. Most of existing multi-view hashing methods resort to linear
hash functions where data manifold is not considered. In this paper
we present multi-view anchor graph hashing (MVAGH), where non-
linear integrated binary codes are efficiently determined by a sub-
set of eigenvectors of an averaged similarity matrix. The efficiency
behind MVAGH is due to a low-rank form of the averaged similar-
ity matrix induced by multi-view anchor graph, where the similarity
between two points is measured by two-step transition probability
through view-specific anchor (i.e. landmark) points. In addition,
we observe that MVAGH suffers from the performance degradation
when the high recall is required. To overcome this drawback, we
propose a simple heuristic to combine MVAGH with locality sen-
sitive hashing (LSH). Numerical experiments on CIFAR-10 dataset
confirms that MVAGH(+LSH) outperforms the existing multi- and
single-view hashing methods.

Index Terms— Anchor graphs, hashing, multi-view learning

1. INTRODUCTION

Hashing seeks a hash function to embed high-dimensional data into
a similarity-preserving low-dimensional Hamming space such that
an approximate nearest neighbor of a given query can be found with
sub-linear time complexity [2,15]. Classic approach on hashing (lo-
cality sensitive hashing [2]) is to compute a hash function purely in
randomized manner, where random projections followed by round-
ing are used to generate binary codes such that the two similar ex-
amples have the same binary codes. Since the performance is not
satisfied when short binary codes are used [12], multiple hash tables
or longer binary codes should be employed in practice.

Learning to hash seeks to the compact similarity-preserving bi-
nary codes, which can be categorized into unsupervised and (semi-
)supervised paradigms. Spectral hashing (SH) [14, 15] is a repre-
sentative unsupervised hashing method, where the Laplace-Beltrami
eigenfunctions of manifolds are used to determine binary codes. Iter-
ative quantization (ITQ) [3] tries to rotate PCA-embedded data by an
orthogonal matrix in order to minimize the quantization error caused
by mapping the embedded data into a binary hypercube. Seman-
tic hashing [11] is the earliest supervised hashing, exploiting deep
networks to learn a non-linear mapping between input data and bi-
nary codes. Practical usefulness of semantic hashing is limited due
to time-consuming training time. Supervised hashing with a rea-
sonable training time has been proposed, where a hash function is
determined sequentially yielding very short discrminative codes [8].
Semi-supervised hashing [13] minimizes the empirical error induced

by the violation of pairwise constraints (must-link and cannot-link),
and prevents from over-fitted hash functions using unlabeled data.

Recently, learning to hash for multi-view (or multi-modal) data
has been developed. [4, 6, 17] seeks an integrated binary codes
which preserves an averaged similarity, extending spectral hashing
for multi-view data. [6] exploits a pre-defined averaged similarity
(or identity matrix) to compute view-specific binary codes which
concatenates into an integrated code. [17] uses a linear sum of
view-specific similarity matrices as an averaged similarity, where an
integrated binary code is directly computed. [4] seeks an integrated
binary code in a sequential manner in order to de-correlate binary
codes, where an averaged similarity is computed by α-average of
view-specific distance matrices. [18] proposes a generative model,
where intra-view and inter-view similarities are generated given
by view-specific binary codes. Besides [4, 6, 17], [18] can adopt
non-vectorial inputs, but the algorithm is not scalable and the per-
formance is degraded when code length is increased.

In this paper, we present multi-view anchor graph hashing
(MVAGH), where an non-linear integrated binary code is deter-
mined by a subset of eigenvectors of an averaged similarity induced
by multi-view anchor graph. Multi-view anchor graph keeps the
averaged similarity in a low-rank form, where the eigenvectors can
be computed efficiently. Note that hashing with an anchor graph [9]
has been already popular for unsupervised hashing, but the exten-
sion for multi-view data has never been studied. Since MVAGH
computes non-linear binary code in an efficient way, it has a clear
advantage than the previous multi-view hashing, where [4, 6, 17]
tries to compute a linear hash function and [18] is not scalable and
needs label information. More specifically, [4, 6, 17] considers a
linear hash function to preserve the pair-wise similarity in Euclidean
space. However, if the data lie on the embedded low-dimensional
manifold, the linear hash function cannot well capture the data sim-
ilarity, because the examples measured large distance in Euclidean
distance can be similar in the manifold. [18] considers a non-linear
hash function, but it is not scalable because the similarity matrix is
kept explicitly. We observe that MVAGH suffers from the perfor-
mance degradation when the high recall is required. To overcome
this drawback, we propose a simple heuristic to combine MVAGH
with locality sensitive hashing (LSH).

2. MULTI-VIEW ANCHOR GRAPH HASHING

In this section, we describe multi-view anchor graph hashing
(MVAGH), exploiting multi-view anchor graph to approximate
the averaged similarity. Before discussing MVAGH, we clarify our
notation. Suppose that {xi}Ni=1 is a set of N objects, where each
object xi is represented by K different view-specific examples by
{x(1)

i , . . . ,x
(K)
i }. We define the integrated binary code matrix as
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Y ∗ = {y∗i }Ni=1 ∈ {−1,+1}r×N , where y∗i is the binary code
associated with xi and r is the code length.

MVAGH borrows the spectral hashing formulation in order to
seek an integrated binary code matrix Y ∗ ∈ {−1,+1}r×N which
preserves the averaged similarity S∗:

argmin
Y ∗

1

2

N∑
i=1

N∑
j=1

S∗ij‖y∗i − y∗j‖22,

subject to Y ∗1N = 0,
1

N
Y ∗Y ∗> = Ir, (1)

where ||yi|| is the Euclidean norm of yi and 1N ∈ RN is the
vector of all ones. Since y∗>i y∗i is always r, the objective function
is equivalent to

argmax
Y ∗

1

2
tr(Y ∗S∗Y ∗>). (2)

Ignoring the binary constraint, the solution of (2) with the constraints
of (1) is the largest eigenvectors of the similarity matrix. As in an-
chor graph hashing [9], if the similarity matrix is low-rank approxi-
mated, the eigenvectors are efficiently computed and the generalized
eigenfunctions are also easily computed for a novel input. Therefore,
the natural question is how to construct the low-rank approximation
of the averaged similarity induced by multi-view data.

2.1. Multi-View Anchor Graph
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Fig. 1. Random walk view of similarity graph approximated by an-
chor graph (a) and multi-view anchor graph (b) when the number of
views is two. If more than two views, the multi-view anchor graph
can be developed like (b).

Anchor graph [7] is a low-rank approximation of neighborhood
graph (such as k-NN and ε-graph), where the similarity between data
points are measured by a small number of anchor points. Fig. 1
(a) represents the bipartite graph, where the left vertices are data
points and the right ones anchor points. Data points and their as-
sociated two-nearest anchor points are connected. The similarity of
two points are measured by two-step transition probability through
anchor points. We observe that the similarity of two points is greater
than zero only when they share the same anchor point, which means
that the similarity matrix approximated by anchor graph is empiri-
cally sparse and preserves the data locality. The anchor points should
be selected to sufficiently cover the data distribution. In practice, the
cluster centers by a few iteration of k-means are enough to be anchor
points.

Though anchor graph is successfully applied to unsupervised
hashing [9], the extension for multi-view data has not studied. We
first define multi-view anchor graph, where the different contribution

of each view is well combined to approximate the averaged neigh-
borhood graph. Since the data distribution might be different for
each view, we select anchor points for each view 1, and k-th view
specific anchor points denoted as {µ(k)

j }
M
j=1. Define the k-th view

specific similarity between the example x(k)
i and µ(k)

j as

Z
(k)
ij =

k(x
(k)
i ,µ

(k)
j )∑K

k=1

∑
m∈[i] k(x

(k)
i ,µ

(k)
m )

, ∀j ∈ [i], (3)

where [i] contains the indices of the l-nearest anchors of x(k)
i (usu-

ally l = 3), and k(·, ·) is any kernel function.
The average similarity between the objects xi and xj is denoted

as S∗ij = p(xj |xi). When the number of views is two, we consider
a tri-partite graph in Fig. 1 (b) to approximate the average similarity
by multi-view anchor graph, where the similarity between the two
objects, xi and xj , are two-step transition probability through view-
specific anchor points:

p(xj |xi) =
K∑
k=1

M∑
m=1

p(xj |µ(k)
m )p(µ(k)

m |xi), (4)

where p(xj |µ(k)
m ) =

Z
(k)
jm∑N

j=1 Z
(k)
jm

and p(µ(k)
m |xi) = Z

(k)
im . We de-

fine that Λ(k) is a diagonal matrix whose m-th diagonal entry is∑N
j=1 Z

(k)
jm and [Z(k)]im = Z

(k)
im . Using this notation, p(xj |xi) =

[
∑K
k=1Z

(k)Λ(k)−1

Z(k)>]ij . Letting Z∗ = [Z(1) · · ·Z(K)] and
Λ∗ is diag(Λ(1) . . .Λ(K)), the averaged similarity can be low-rank
approximated by multi-view anchor graph: S∗ ≈ Z∗Λ∗

−1

Z∗>.
Multi-view anchor graph can be interpreted as linear sum of view-
specific anchor graph, where the normalization term in (3) is the link
between the view-specific ones.

The eigenvectors of S∗ are obtained by the eigen-problem solu-
tion of small matrixA = Λ∗

−1/2

Z∗>Z∗Λ∗
−1/2

. Let the r-largest
eigenvalues Σ = diag(σ1, . . . , σr) associated with the eigenvectors
V = [v1, . . . ,vr] of A. Now, the transpose of eigenvectors of S∗

denoted as Ỹ is computed by

Ỹ =
√
NΣ∗

−1/2

V >Λ−1/2Z∗> =
√
NW>Z∗>, (5)

where W = Λ∗
−1/2

V Σ−1/2. The binary codes can be computed
by rounding at zero: Y ∗ = sgn(Ỹ ), where sgn function operates on
each element. However, the relaxed solution is not satisfied, and we
adapt several heuristics to find the better solution (since the original
solution is NP-hard, we have to use some reasonable heuristics for
the better solution).

In spectral clustering, spectral rounding [16] has been widely
used to refine the solution, where a rotation matrix is estimated to
minimize the quantization error induced by discretizing the continu-
ous relaxed solution. Recently, the similar idea has been successfully
applied to learn a hash function, which is known as iterative quanti-
zation (ITQ) [3]. The objective function of ITQ is presented as

argmin
R,Y ∗

||Y ∗ −R>Ỹ ||2F ,

s.t. Y ∗1N = 0N ,R
>R = RR> = Ir, (6)

1For view-specific anchor points, we apply k-means (10 iterations) into
each view
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whereR and Y ∗ are iteratively estimated to minimize the quantiza-
tion error as in [3, 16]. ITQ originally considers the PCA embedded
space, but spectral embedded space is also well suited to ITQ, be-
cause we empirically observe that the binary codes become more
compact and reflect the better data similarity (Fig. 2). Fig. 2 (a)
represents tr(Y ∗S∗Y ∗>) over iterations, where we observe that the
similarity between binary codes more reflects the original data simi-
larity by ITQ. Fig. 2 (b) means || 1

n
Y ∗Y ∗> − Ir||2F over iterations,

where we observe that the binary codes are more de-correlated by
ITQ.
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Fig. 2. During ITQ iteration, the binary codes more preserve the
data similarity (a) and are more de-correlated (b). CIFAR-10 dataset
is used.

2.2. Out-of-Sample Extension

A subset of eigenvectors of multi-view anchor graph is used to deter-
mine the binary codes of training data. We can compute analytically
the binary code of a novel point by using Nyström method as in [9].
Lemma 1 represents the analytic hash function of a novel point.

Lemma 1. Given m view-specific anchor points {µ(k)
j }

M
j=1 for k =

1, ...,K and any example x, define a mapping z : RD → RM as
follows

z(x) =
[z(x(1)), . . . , z(x(K))]>∑K

k=1 z(x
(k))

,

where z(x(k)) = [δ1k(x
(k),µ

(k)
1 ), . . . , δmk(x

(k),µ(k)
m )] and δi ∈

{1, 0}. δj = 1 iff anchor µ(k)
j is one of s-nearest anchors of sample

x(k) according to the kernel function k(·, ·). The binary code of a
novel point, y∗, is expressed as

y∗ = sgn(R>W>z(x)),

whereW is defined in (5).

The proof of this lemma is straightforward from Theorem 1 in [9].
Algorithm 1 represents a pseudo-code for MVAGH.

2.3. Multi-View Anchor Graph Hashing + LSH

Multi-view anchor graph hashing consists of the two steps: (1)
project the data onto the largest eigenvectors of multi-view anchor
graph, and (2) rounding at zero to produce binary codes. Since the
intrinsic dimension is usually low, the similarity between binary
codes with large code size might not well reflect the data similarity.
We observe that the precision is decreased with large code size when
the high recall is required.

As in Fig. 3, when the high recall is required (the number of re-
turned example is large), the similarity induced by binary codes turns

Algorithm 1 Multi-View Anchor Graph Hashing (MVAGH)

Input: For each k-th view, training data are X(k) =

[x
(k)
1 · · ·x

(k)
n ] ∈ Rm×n, anchor points are {s(k)j }

M
j=1, and test

data is x(k) ∈ Rm for k = 1, · · · ,K. Binary code length is r.
Output: Binary code y associated with the test data {x(k)}Kk=1.

1: Compute the similarity between the example and anchor point
as [Z(k)]im using the equation 3.

2: Let Z∗ = [Z(1), · · · ,Z(K)] and Σ∗ = [Σ(1), · · · ,Σ(K)].
3: Apply eigenvalue decomposition to A = V ΣV >, where A =

Λ∗
−1/2

Z∗>Z∗Λ∗
−1/2

.
4: Ŷ =

√
NW>Z∗>, whereW = Λ∗

−1/2

V Σ−1/2.
5: R0 is a random rotation matrix.
6: for i = 1, . . . , 50 do
7: Y i = sgn(R>i−1Ŷ ).

8: Ri = M̂M>, where Y iŶ =MΩM̂
>

by SVD.
9: end for

10: Return k-bit binary code: y = sgn(R>50W>z(x)), where z(x)
is defined in Lemma 1.
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Fig. 3. Precision of MVAGH over the code size when the number of
returned examples is changed.

to be incorrect. This observation leads us to propose a simple heuris-
tic to increase retrieval performance when code size is large, where
the binary codes from MVAGH and locality-sensitive hashing (LSH)
are concatenated. We compute the meaningful binary code from
MVAGH by choosing ra largest eigenvectors, where ra should be
small (in practice ra = 32 is sufficient). If we want to use r1bits bi-
nary code and r1 > ra, we first compute Y ∗ra = sgn(R>Ỹ ), where
Ỹ is transpose of ra largest eigenvectors from multi-view anchor
graph. The remaining (r1 − ra)bits are generated by LSH, where
Y ∗remain = sgn(M>R>Ỹ ) and M is generated from N(0, I).
The final binary code is obtained by concatenating into Y ∗ra and
Y ∗remain, yielding Y ∗ = [Y ∗ra ;Y

∗
remain]. Since the ra largest

eigenvectors reveal the intrinsic data structure, we expect that the
bits generated by LSH are meaningful. We denote this heuristic as
MVAGH + LSH, and section 3 shows that this method outperforms
state-of-the art methods over all bits.

3. NUMERICAL EXPERIMENTS

In this section, we use CIFAR-10 [5] contains 60,000 images with 10
labels. We form a query set by randomly choosing 1,000 images and
construct a training set using the rest of images. All experiments are
repeated five times to compute the mean and standard deviation for
error bars. We use GIST [10] and HOG [1] descriptors to produce
two views of each image. For GIST, we use Gabor filter with 8 ori-
entations and 3 scales, leading to 384-dimensional vector. For HOG,
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Fig. 4. Precision of MVAGH+LSH when single feature is used, or two features combined by multi-view anchor graph (a). Comparison
between MVAGH+LSH into multi-view (b) and single-view (c) hashing methods.
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Fig. 5. Precision of MVAGH-LSH over the number of returned im-
age (left), and the effects of the parameter ra (right).

we compute the image gradients of non-overlapping windows, where
the orientation of gradients is quantized into 8 bins and normalized
with 4 different metrics, and 36 4-by-4 non-overlapping windows
yield 1152-dimensional vectors.

We compare our proposed method (MVAGH + LSH) and
the recent multi-view hashing methods: multi-view hashing [6],
CHMIS [17], and SU-MVAGH [4] (Fig. 4 (b)). We also compare
our method into the state-of-the art single-view hashing methods:
anchor graph hashing (AGH), iterative quantization (ITQ), random
maximum margin hashing (RMMH) (Fig. 4 (c)). For single-view
hashing methods, multi-view data are concatenated into single
representation. As a performance measure, we use Hamming rank-
ing [9, 13] where the rankings between a query and data points are
decided by Hamming distance. If there exists a tie in the Hamming
distance, we break it randomly. We calculate the precision at the top
500 examples.

For the parameter of MVAGH, we select 500 anchor points
for each view, s = 3, and ra = 32. We use Gaussian kernel:
exp(− 1

σ2 ||x−y||22), where σ is set the median of pairwise distances
of data points. We choose the best parameters for the compared
methods. Fig. 4 summarizes the comparison between MVAGH +
LSH into various state-of-the-art hashing methods, where (a) means
multi-view hashing clearly improves the precision than using single
descriptor, (b) and (c) suggest that our MVAGH + LSH outperforms
the existing multi and single-view hashing methods. Fig. 5 shows
that the performance of MVAGH-LSH is not decreased when code
length is large, and the effects of the parameter ra, which means that
if we choose longer ra than 32, the performance is decreased. Fig. 6
represents the example of retrieval result, where the leftmost image
is a query and the 20-nearest neighbors are displayed. The incorrect
retrieved images are marked by red rectangle. We can see that the

MVAGH

MVAGH
-GIST

MVAGH
-HOG

AGH

ITQ

Fig. 6. Retrieval results on CIFAR-10. Leftmost image is a query
and the 20-nearest images are displayed, and the incorrect ones are
marked by the red rectangle.

precision is increased when the two features are used together, and
MVAGH is superior to the single-view hashing methods.

4. CONCLUSIONS

We have presented multi-view anchor graph hashing (MVAGH)
where non-linear integrated binary codes are determined by a subset
of eigenvectors of an averaged similarity matrix. The underlying
idea was based on multi-view anchor graph to keep the averaged sim-
ilarity in a low-rank form, where the similarity between two points
is measured by two-step transition probability through view-specific
anchor points. We have also presented a heuristic to improve the
performance of MVAGH by combining it with LSH, demonstrating
its high performance over existing methods.
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