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ABSTRACT

Sparse modeling has demonstrated its superior performances
in many applications. Compared to optimization based ap-
proaches, Bayesian sparse modeling generally provides a
more sparse result with a knowledge of confidence. Us-
ing the Spike and Slab priors, we propose the hierarchical
sparse models for the scenario of single task and multitask
- Hi-BCS and CHi-BCS. We draw the connections of these
two methods to their optimization based counterparts and
use expectation propagation for inference. The experiment
results using synthetic and real data demonstrate that the per-
formance of Hi-BCS and Chi-BCS are comparable or better
than their optimization based counterparts.

Index Terms— sparse modeling, hierarchical, spike and
slab, compressed sensing

1. INTRODUCTION

In the fields across science and engineering, we’re facing
increasing problems dealing with high dimensional signals,
which are often inherently sparse in some dictionary. The
candidate for the dictionary could be fourier, wavelet or
some trained dictionaries. Compressed Sensing (CS) [1, 2]
leverages this sparsity structure and has gained success in
applications such as face recognition, image denoising and
video tracking. In particular, Lasso [3] is proposed to mini-
mize the squared loss subject to l1 constraints on the sparse
coefficients. Elastic Net [4] penalizes both the l1 norm and
l2 norm to encourage grouping. With known hierarchical
structure, Group Lasso [5, 6] penalizes the group level spar-
sity. However, Group Lasso tends to produces results that are
dense inside each group. Thus, Hierarchical Lasso (HiLasso)
is proposed to regualize both the group sparsity and in-group
sparsity. And its multi-task version Collaborative HiLasso
(C-HiLasso) takes into account of both the group structure in
each task and block struture across multiple tasks [7].

Besides these optimization based approaches, Bayesian
inference has also been used for sparse modeling. The bene-
fits of using Bayesian inference are two-folded. First, it pro-
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vides the full posterior of sparse coefficients rather than a
point estimate, which can provide us a knowledge of confi-
dence in the result. Second, the Bayesian framework gener-
ally gives more sparse results compared to optimization based
approaches [8, 9, 10]. Lasso can be interpreted as a MAP es-
timate when the sparse coefficients have independent Laplace
priors [11]. To perform Bayesian inference in a closed form,
Bayesian Compressive Sensing (BCS) [8] adopts a hierarchi-
cal Gaussian-Gamma prior instead (which corresponds to the
Student-t distribution). BCS has also been extended to the
multi-task case (MT-BCS) [12] by sharing the priors among
different tasks and gain more effectiveness and robustness.
Besides Laplacian and Student-t priors, a particularly well-
suited example of sparsity prior is the Spike and Slab prior
[13, 14]. Spike and Slab has become a gold standard for spar-
sity prior for two reasons. First, it’s more effective in enforc-
ing sparsity by selectively reducing the magnitude of a subset
of the sparse coefficients while both Laplace and Student-t
have a single characteristic scale. Second, the desired degree
of sparsity is related to the weight for the Spike part.

This paper is divided into the following sections: In sec-
tion II, we discuss the relation of our work to prior work. In
section III, we will further elaborate on the advantages of us-
ing Spike and Slab prior and bridge the gap between Bayesian
sparse modeling using Spike and Slab and optimization based
approaches. Then we show that by modifying the priors of
sparse coefficients, we will have the Bayesian counterparts
of HiLasso and C-HiLasso. In section IV we compare the
performance of Bayesian version of HiLasso and C-HiLasso
with the optimization based approaches using synthetic data
and real data. We end the paper with a conclusion and future
work in section V.

2. RELATION TO PRIOR WORK

Motivated by the benefits of Bayesian sparse modeling and
advantages of Spike and Slab priors, we focus on the hierar-
chical sparse modeling using Spike and Slab priors for both
single task and multitask scenarios. The connection between
sparse modeling using Spike and Slab prior with Elastic Net is
established in [14]. We give a further analysis on the regular-
ization parameters. Also we propose two hierarchical sparse
models using Spike and Slab priors and relate them to Hi-
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Lasso and C-HiLasso. Prior works using Spike and Slab pri-
ors for multi-task learning problems [15, 16] only consider the
block sparsity among different tasks while our work consider
both the block sparsity across tasks and the group sparsity in-
side each task.

3. HIERARCHICAL SPARSE MODELING USING
SPIKE AND SLAB PRIORS

In the single task scenario, we have the dictionaryAAA, the mea-
surement yyy and the corresponding sparse coefficient xxx, which
has a signal model as:

yyy = AAAxxx+nnn, (1)

where yyy ∈ Rm,xxx ∈ Rn,AAA ∈ Rm×n, and nnn models the Gaus-
sian noise. For Bayesian Sparse Modeling using Spike and
Slab priors (with independence assumption), we have:

yyy|AAA,xxx,γγγ, σ2
n ∼ N

(
AAAxxx, σ2

nIII
)

(2)

xxx|σ2, γγγ ∼
n∏
i=1

γiN (0, σ2) + (1− γi)δ0 (3)

γγγ|κ ∼
n∏
i=1

Bernoulli(κ). (4)

where γγγ is the latent variable indicating the chosen support,
σ2
n denotes the noise standard deviation, σ2 represents the

spread of the Slab part and κ reflects the sparsity. It is shown
in [14] that with fixed σ2

n, σ2 and κ, the cost function for MAP
estimate reduces to:

L(xxx) = ‖yyy −AAAxxx‖22 + λ‖xxx‖22 + ρ‖xxx‖0, (5)

where ρ = σ2
n log

(
2πσ2(1−κ)2

κ2

)
and λ =

σ2
n

σ2 . This cost func-
tion is similar to the cost function of Elastic Net [4], while the
latter one has to relax l0 norm to l1 norm for optimization pur-
poses. Thus Spike and Slab priors can lead to a more sparse
result while having the grouping benefit of Elastic Net.

To bring some intuition, we take one more step to look at
the regularization parameters λ and ρ. When the noise power
and sparsity of the signal are fixed (fixed σ2

n and κ), if we’re
looking for a solution with more small energy terms (smaller
spread of Slab part σ2) rather than with a few large energy
terms, λ would become larger while ρ becomes smaller to en-
courage the l2 norm. When the noise power and the spread
of Slab part are fixed (fixed σ2

n and σ2), if we’re looking for
a more sparse solution (smaller κ), ρ will become larger to
bring more penalty on the l0 norm. Finally, when the spread
of Slab part and the sparsity are fixed (fixed σ2 and κ), if noise
power is larger (larger σ2

n), we need to emphasis more on the
l0 norm and l2 norm to find the desired solution. Note that for
optimization based approaches, the regularization parameters
are always chosen by cross-validation while the Bayesian ap-
proach brings more intuition on the relationship between pa-
rameters selection and data characteristics.

3.1. Hierarchical extension - Hi-BCS

When the group structure is known, Group Lasso performs
better than Lasso. Motivated by this, we extend the Bayesian
model to take into account of Group Sparsity by simply mod-
ifying the priors as:

xxx|σ2, γγγ ∼
G∏
i=1

Ki∏
j=1

γiN (0, σ2) + (1− γi)δ0 (6)

γγγ|κ ∼
G∏
i=1

Ki∏
j=1

Bernoulli(κ). (7)

whereG is the total number of groups,Ki denotes the number
of dictionary atoms inside each group Gi. Following similar
deviations as in [14], it can be shown that, the cost function
reduces to:

L(xxx) = ‖yyy −AAAxxx‖22 + λ
∑
G

‖xxx[G]‖22 + ρ‖xxx‖0, (8)

where
∑
G ‖xxx[G]‖22 is the squared Group Lasso regularizer.

Thus we can see that by enforcing the group structure, hierar-
chical sparse modeling using Spike and Slab priors (Hi-BCS)
can enforce both the group sparsity and in-group sparsity like
HiLasso. And it’s superior to Group Lasso because it enforces
the overall sparsity by the l0 norm on sparse coefficients.

3.2. Collaborative Hierarchical extension - CHi-BCS

Although Spike and Slab priors have been used in multitask
sparse modeling [15, 16], only block sparsity (correlation be-
tween different tasks) has been considered. In this section, we
will provide an extension of collaborative hierarchical sparse
modeling using Spike and Slab priors (CHi-BCS). It’s known
that C-HiLasso [7] suits for the scenarios when multiple tasks
share the same group of features while both the number of ac-
tive groups and the number of atoms in each active group are
sparse. And its cost function is as follow,

L(XXX) = ‖YYY −AAAXXX‖22 + λ
∑
G

‖XXX [G]‖F + ρ

T∑
t=1

‖xxxt‖0, (9)

whereXXX [G] is the submatrix formed by all the rows belonging
to group G and

∑
G ‖XXX [G]‖F is the Group Lasso regularizer

for the case of multitask. Motivated by this, we modify the
model to consider the block and group sparsity, which leads
to:

YYY |AAA,XXX,γγγ, σ2
n ∼

T∏
t=1

N
(
AAAxxxt, σ

2
nIII
)

(10)

XXX|σ2, γγγ ∼
T∏
t=1

G∏
i=1

Ki∏
j=1

γiN (0, σ2) + (1− γi)δ0 (11)

ΓΓΓ|κ ∼
T∏
t=1

G∏
i=1

Ki∏
j=1

Bernoulli(κ). (12)
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where YYY and XXX are the concatenation of yyyt and xxxt. T is the
number of tasks. And note that we enforce different tasks
to share same γγγi for same group Gi so that they will have
the desired block structure in the sparse coefficients matrix
XXX . The group sparsity is enforced simulataneously on all the
groups across all the tasks. Following similar deviations, we
can derive the corresponding cost function for CHi-BCS:

L(XXX) = ‖YYY −AAAXXX‖22 +λ
∑
G

‖XXX [G]‖2F +ρ

T∑
t=1

‖xxxt‖0, (13)

and we can see the only difference is the square Group Lasso
regularizer. Note that the overall sparsity is guranteed by the
l0 norm on individual task. Thus CHi-BCS can enforce both
the group sparsity, in-group sparsity and block sparsity.

3.3. Inference

Bayesian inference is computationally demanding for Spike
and Slab priors. Different techniques can be used such as
sampling methods or approximation methods. We choose
expectation propagation (EP) because of its efficiency and
demonstrated success for multi-task learning problems [16].
In this paper, we fix the parameters σ2 to be 1, σ2

n to be the
true noise variance and κ to be the true sparsity of the signal.
Our experience shows that the results are not sensitive to the
choice of the parameters. Sampling methods, hyperpriors or
EM could also be used to estimate these parameters, but it’s
beyond the scope of this paper.

Take Hi-BCS for example, we represent the likelihood
function (2), the prior for sparse coefficients (6) and the prior
for latent variable (7) as different terms t1, t2 and t3. The
joint posterior distribution P(xxx,γγγ,yyy|AAA) can be written as the
product of these terms. We approximate the posterior with
three terms of exponential family parametric distribution for
Hi-BCS:

Q =

G∏
i=1

Ki∏
j=1

N (xj |mj , vj)Bernoulli(γi|pi) (14)

t̃1 = z1

G∏
i=1

Ki∏
j=1

N (xj |m1j , v1j) (15)

t̃2 = z2

G∏
i=1

Ki∏
j=1

N (xj |m2j , v2j)Bernoulli(γi|p2i)(16)

t̃3 = z3

G∏
i=1

Ki∏
j=1

Bernoulli(γi|p3i), (17)

where mj , vj (for j = 1, ...,
∑
GKi) and pi (for i = 1, ..., G)

are the free parameters to infer and will be our estimate of the
mean, variance for sparse coefficients xxx and mean for latent
variables γγγ. And m1j , v1j , m2j , v2j (for j = 1, ...,

∑
GKi)

and p2i and p3i (for i = 1, ..., G) are the parameters to be up-
dated in each EP update. And z1, z2 and z3 are normalization

parameters. Note that mj , vj is specific for each xj while pi
is same for the whole group to favor the group sparsity. The
complete EP algorithm involves the following steps:
1. Initialize all t̃l terms and Q to be non-informative.
2. Repeat until all the t̃l terms converges:
a) To refine each t̃l term, first find Ql by dividing Q with t̃l.
b) Minimize DKL(tmQl||t̃mQl) to modify mlj , vlj and pli
c) Find Q as the product of the new t̃m and Ql to update mj ,
vj and pj
Interested readers can refer to [17] for detailed procedures for
exponential family distributions. The EP algorithm for CHi-
BCS only modifies the approximation to multitask scenario
and will not be provided here due to the page limits.

4. EXPERIMENTAL RESULTS

In this section we compare the performance of the proposed
hierarchical sparse modeling Hi-BCS and CHi-BCS with its
optimization based counterparts. The regularization param-
eters for the optimization based approaches are chosen by
cross-validation. First, we compare the performance of Hi-
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Fig. 1. Reconstruction of uniform spikes for n = 512,m = 100
and sparsity = 20. (a) Original signal; (b) Reconstruction with
BP, ||xxxGroupLasso−xxx||2/||xxx||2 = 0.1663; (c) Reconstruction
with BCS, ||xxxBCS−xxx||2/||xxx||2 = 0.0669; (d) Reconstruction
with Hi-BCS, ||xxxHi−BCS − xxx||2/||xxx||2 = 0.0133.

BCS to Group Lasso [5] and BCS [8]. We replicate the same
1D signal synthetic data example used in [8]. A signal xxx of
length 512 contains 20 spikes being randomly distributed in
15 groups. Each spike has value 1 or -1. The 100 × 512
dictionaryAAA has i.i.d Gaussian entries from N (0, 1) and unit
l2 norm for each row. Zero mean gaussian noise with std of
0.005 is added to yyy. The group structure is given to Group
Lasso and Hi-BCS as totally 64 consecutive groups with 8
atoms each group. Fig. 1(b), (c) and (d) demonstrates the
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Table 1. Simulated Signal Results. Every 4 × 4 cell contains MSE (× 103) for MT-BCS, C-HiLasso and the proposed CHi-
BCS. In the first case (top left), we vary noise σ while keeping q = 8, s = 8 and T = 50. In the second case (top right), we
vary group number q while keeping σ = 0, s = 8 and T = 50. In the third case (bottom left), we vary in-group sparsity s while
keeping q = 8, σ = 0 and T = 50. In the last case (bottom right), we vary task number T while keeping q = 8, s = 8 and
σ = 0. Bold indicates the best results.

noise std σ MT-BCS C-HiLasso CHi-BCS group number q MT-BCS C-HiLasso CHi-BCS
0.1 28.15 24.82 23.71 4 34.94 25.89 23.91
0.2 46.16 29.41 30.82 8 20.29 21.21 18.07
0.4 97.28 31.25 50.47 12 13.08 16.48 13.93
in-group sparsity s MT-BCS C-HiLasso CHi-BCS task number T MT-BCS C-HiLasso CHi-BCS
4 8.24 8.18 1.72 10 31.71 22.49 16.99
8 20.29 21.21 18.07 20 24.70 22.25 17.58
12 27.50 34.59 32.29 50 20.29 21.21 18.07

reconstruction results with Group Lasso, BCS and Hi-BCS.
All approaches can sucessfully recover the correct support of
the signal but Hi-BCS recover with smaller error. It’s because
of the superior selectivity of Spike and Slab priors and the
enforcing both group sparsity and in-group sparsity.

For the multitask scenario, we first compare CHi-BCS
with MT-BCS [12] and C-HiLasso [7] using synthetic data.
We use SPAMS package for C-HiLasso. As in [7], we create
q sub-dictionaries, each with 64 atoms of dimension 64 with
i.i.d. Gaussian entries from N (0, 1) and unit l2 norm. The
dictionary AAA is built by concatenating the q sub-dictionaries
together. We randomly choose the same 2 groups to be ac-
tive for all the tasks and for each group only s atoms in each
group will be active (value 1 for sparse coefficients). Thus
each task yyyt will be a mixture of 2s atoms. And in total
we generate T such tasks and add Gaussian noise of stan-
dard deviation σ. The true sparse coefficients matrix XXX has
both block and group structure with in-group sparsity. Table
I summarizes the mean-square error (MSE) of the recoverd
sparse coefficient matrix for different σ, q, s and T . We can
see that CHi-BCS performs comparably with C-HiLasso and
generally better than MT-BCS. However, when the in-group
sparsity s becomes larger, MT-BCS has a slightly better per-
formance than CHi-BCS and C-HiLasso. This is because both
CHi-BCS and C-HiLasso favors block sparsity while promot-
ing in-group sparsity.

We also compare the performance of these three methods
on real data using the USPS digits dataset. The signals are
vectors containing the intensities of 16× 16 images of digits 0
to 9 (m = 256). For each digit, we use 150 out of 1100 images
to build the test dataset and the other 950 images to train a
sub-dictionary. We use K-SVD [18] for dictionary training
and the sub-dictionary for each digit has the dimension 256×
100. Thus the whole dictionaryAAA has dimension 256× 1000.
We randomly active 1 atom foreach of the k active digits and
generate 10 tasks out of it. Thus each task is the mixture of
k randomly chosen different digits and zero mean Gaussian
noise with std σ is added. Table II summarizes the MSE of

the recoverd coefficients matrix. CHi-BCS works comparably
as C-HiLasso and much better than MT-BCS in all scenarios.

Table 2. USPS digits datset Results. Every 4× 4 cell contains
MSE (× 103) for MT-BCS, C-HiLasso and proposed CHi-
BCS. In the first case (top), we vary noise σ for k = 1. In the
second case (bottom), vary noise σ for k = 2. Bold indicates
the best results.

1 digits MT-BCS C-HiLasso CHi-BCS
σ = 0.1 1.35 1.12 1.25
σ = 0.2 6.64 1.34 1.17
σ = 0.4 8.66 0.97 1.49
2 digits MT-BCS C-HiLasso CHi-BCS
σ = 0.1 2.98 2.09 3.67
σ = 0.2 8.31 2.08 2.27
σ = 0.4 8.18 2.12 2.60

5. CONCLUSION AND DISCUSSION

In this paper, we demonstrate the benefits of using Spike and
Slab priors for hierarchical sparse modeling and proposed two
extensions for single and multitask scenarios - Hi-BCS and
CHi-BCS. The Hi-BCS enforces the group sparsity and in-
group sparsity simultaneously. The CHi-BCS can enforce
the block and group sparsity while favoring in-group sparsity
just like its optimization based counterpart C-HiLasso. These
two extensions are shown to have comparable or better per-
formance with its optimization based counterparts using syn-
thetic and real datasets. The result shows once again that en-
forcing structure prior into sparse modeling can lead to a bet-
ter results. Note that recent works [19, 20] have shown how
to add more sophisticated structure (dirty model or a undi-
rected graph) into the sparse modeling. Thus our future work
will focus on extending our approach into more sophisticated
structures for different applcations.
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