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ABSTRACT

This paper presents a novel method for fitting a sparse Gaus-
sian mixture on a non-negative function of reference. Despite
this problem is well known to be highly non-linear, the use of
the logarithmic utility function seems to alleviate such an un-
desired situation. Moreover, sparsity measures related to the
Gaussian precision can be integrated in such a way that the
numerical algorithm turns out easy to implement, it is numer-
ically efficient, and presents stable convergence. The method
has been originally thought for the parameterization of power
spectra, but it can also be useful in different scenarios.

Index Terms— Gaussian function mixture, function ap-
proximation, sparsity, optimization.

1. INTRODUCTION

The Gaussian function has many appealing properties, such
as in universal function approximation [1], minimum time–
frequency dispersion [2], and outcome of the central limit
theorem. Fitting a Gaussian function mixture (GFM) on
data has proven very useful in selected problems in signal
processing and electrical engineering [3]-[8]. Despite func-
tion approximation and data regression with GFM counts
with solid analytical foundations [9]-[11], several research
questions still remain open, such as the update of the Gaus-
sian variance/width, or the development of mechanisms that
promote sparsity in the mixture.

In the so-called radial basis functions (RBF) [9] for in-
stance, updating the Gaussian width with gradient descent
yields unstable or slow convergence [10, 12], and in Gaus-
sian “kernel” regression [11], the variance must be chosen in
advance. Several efforts have been done to alleviate those lim-
itations, such as Kalman filtering [13], growing and pruning
[14, 15], self-organization [16], covariance update on dense
regular node tiling [17], and others [18, 19]. In spite of the
previous efforts, and several others not included here due to
space constraints, Gaussian variance adaptation and sparsity
(as will be shown later, both concepts are interrelated) have
not been sufficiently explored. In consequence, the current
GFM techniques cannot beat the “curse of dimensionality”.

This paper presents a novel method that seems to over-
come the limitations of previous GFM techniques. The fitting
criterion is based on the generalized logarithmic utility func-
tion [20], which can move smoothly between mean square
error (MSE) and log-error minimization. In this specific sce-
nario, the estimation of all parameters of the Gaussian mixture
can be achieved by solving a sequence of least squares prob-
lems. Moreover, sparsity-promoting measures can be easily
integrated in the original formulation. Although the work
tackles one-dimensional functions, it can be easily extended
to multidimensional Gaussian mixtures. The paper organiza-
tion follows: the problem is stated in Sec. 2, Sec. 3 presents
the numerical algorithm, comparison with previous methods
is brought in Sec. 4, the empirical validation on speech spec-
tra is found in Sec. 5, and the conclusions close the paper.

2. PROBLEM FORMULATION

We aim to approximate a nonnegative univariate function of
reference y(x) ≥ 0 as a non-negative sum of Gaussian acti-
vation functions at points x

f(x) =
K∑

k=1

wkg(x, μk, ηk), (1)

where wk ≥ 0, and g(x, μ, η) is defined for η ≥ 0 as

g(x, μ, η) = exp
(−η(x− μ)2

)
. (2)

In this paper, we propose a cost function based on the
generalized logarithmic utility function [20]

lc(z) = log(z + c), (3)

where c ≥ 0. In particular, we aim to minimize

J(v,μ,η) =
1

2

∑
x

e2(x), (4)

where
e(x) = lc

(
y(x)

)− lc
(
f(x)

)
. (5)

The vectors of log-weights, centers, and precisions, are re-
spectively defined as v = [v1, . . . , vK ]T with vk = logwk ,
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μ = [μ1, . . . , μK ]T , and η = [η1, . . . , ηK ]T . The parameter
c in (5) allows us to smoothly move from the traditional case
of MSE minimization (c → ∞) [10], to the minimization
of the mean square log error (c = 0), which appears as the
“perceptually-linear” scale in speech and audio processing.

It is important to point out that the selection of the orderK
is a challenging problem. Of course, in some particular appli-
cations the parameter K could be a priori known. However,
we will focus on the general case in which K is unknown,
and only an upper bound is available. Thus, we propose to
find the optimal number of Gaussians by promoting sparsity
in the precision vector η, which will result in several linearly
dependent Gaussian shapes (those with ηk = 0), that can be
replaced by only one zero-precision Gaussian.

According to the previous discussion, the optimization
problem to solve is

minimize
v,μ,η

J(v,μ,η) + λ1Tη,

subject to η ≥ 0
(6)

where1T is the all-one row vector, λ is the regularization con-
stant, and 1Tη = ‖η‖1 is the convex envelope of the sparsity-
promoting l0-norm ‖η‖0.

3. PROPOSED ALGORITHM

Excluding the case of mean square log error (c = 0) with
only one Gaussian shape (K = 1, λ = 0), which can be eas-
ily convexified by means of a simple reparameterization [21],
the optimization problem in (6) is non-convex in general, and
therefore difficult to solve. Here, we aim to find a local so-
lution by solving the Karush-Kuhn-Tucker (KKT) conditions
[22]. In order to do that, we write the Lagrangian of (6) as

L(v,μ,η,γ) = J(v,μ,η) + λ1Tη − γTη, (7)

where γ = [γ1, . . . , γK ] is a vector of Lagrange multipliers.
Thus, the KKT conditions can be written as

Gradient of the Lagrangian: ∇kL(v,μ,η,γ) = 0 ∀k
Primal feasibility: η ≥ 0,

Dual feasibility: γ ≥ 0,

Complementary Slackness: γTη = 0,

where ∇k =
[
∂/∂vk, ∂/∂μk, ∂/∂ηk

]T .

3.1. Implementation Details

The gradient of the Lagrangian (7) results in

∇kL = −
∑
x

ρk(x)ak(x)e(x) +
[
0, 0, λ− γk

]T
, (8)

where

ak(x) =
[
1, 2ηk(x− μk), −(x− μk)

2
]T

, (9)

and

ρk(x) =
wkg(x, μk, ηk)

f(x) + c
(10)

is the “relevance” of the kth activation function at x, which
satisfies 0 < ρk(x) < 1. We can rewrite the error term around
the kth activation function as

e(x) = ek(x) + ηk(x− μk)
2 − vk, (11)

where
ek(x) = log

[
y(x) + c

]
+ log

[
ρk(x)

]
(12)

provides a measure of the residual error when the kth Gaus-
sian shape is not included in the model. With the previous
simplifications, the gradient (8) can be rewritten as

∇kL = yk −Hkzk −
[
0, 0, γk

]T
, (13)

for k = 1, · · · ,K , where

yk = −
∑
x

ρk(x)ak(x)ek(x) +
[
0, 0, λ

]T
, (14a)

Hk =
∑
x

ρk(x)ak(x)
[
x2, x, 1

]
, (14b)

and
zk =

[
ηk, −2ηkμk, ηkμ

2
k − vk

]T
. (15)

At this point, one can realize that the KKT conditions re-
sult in a complicated system of nonlinear equations: the terms
ak(x) and ρk(x) depend on all the parameters to be found.
In order to obtain the unknowns vk, μk, ηk and γk from the
null of the gradient (13), the terms Hk and yk are consid-
ered constant, such that the vector zk is easily obtained by
solving a least squares problem.1 This way of proceeding re-
sembles a quasi-Newton recursion, in which the gradient is
approximated by a linear function of the parameters, and the
solution is accomplished by reevaluating the constant terms
with the partial solution. In each iteration, we need however
to take into account the complementary slackness condition,
which yields one of the following two cases: 1) when the
non-negativity constraint is inactive (γk = 0), the problem
reduces to minimize ‖yk −Hkzk‖, which can be easily done
by means of the generalized inverse of Hk; once the solution
is obtained we check whether ηk ≥ 0 and ‖yk −Hkzk‖ = 0,
if any of these conditions is not satisfied, we need to consider
the second scenario; 2) if the non-negativity constraint is ac-
tive (ηk = 0), we need to solve the least squares problem

minimize
vk,γk

∥∥∥yk −Hk

[
0, 0, −vk

]T − [
0, 0, γk

]T∥∥∥
2

, (16)

and, if the solution provides a γk < 0, we will just set γk = 0

and vk = −yT
k h

(3)
k /‖h(3)

k ‖2, where h
(3)
k denotes the third

column of Hk.
1Obviously, once the vector zk is obtained, the original parameters

vk, μk, ηk can be easily recovered.
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3.2. Additional Remarks

The Hessian matrix that derives from the Lagrangian (7) al-
lows us to better understand the complexity of the problem.
From the formula of the gradient (8), it is easy to deduce that
the Hessian elements that correspond to different activation
functions are weighted by the product of the respective rel-
evance functions (10). Given the local character of the rel-
evance function, the resulting Hessian matrix is sparse (and
nearly block-diagonal). Thus, splitting the problem into K
parallel subproblems (13) is a reasonable efficient approach.
On the other hand, the properties of the proposed iterative al-
gorithm can be identified from the exact Hessian submatrix
for the kth activation function, which results in

∇2
kL =

∑
x

ρ2k(x)ak(x)a
T
k (x) (17)

−
∑
x

ρk(x)
(
1− ρk(x)

)
ak(x)a

T
k (x) e(x)

−
∑
x

ρk(x)

⎡
⎣

0 0 0
0 −2ηkμk 2(x−μk)
0 2(x−μk) 0

⎤
⎦ e(x).

The first term in the Hessian represents its main positive
semidefinite contribution, while the other two, that cannot be
guaranteed such, depend on the error e(x). Hence, assum-
ing a small-noise scenario, both terms nearly vanish in the
vicinity of the solution. It is interesting to mention that these
Hessian terms correspond to the parametric elements kept
constant during the quasi-Newton iteration and reevaluated
thereafter. Finally, the positive semidefinite Hessian term re-
veals an interesting aspect, namely, each point x is weighted
by the square of the relevance function (10). This fact invites
us to redefine the approximate Hessian matrix Hk and refer-
ence vector yk in (14) accordingly. This alternative has been
proven experimentally to yield faster speed of convergence.
The overall method is summarized in Algorithm 1.

4. COMPARATIVE ANALYSIS

The most popular methods for regression with a Gaussian
function mixture are the so-called radial basis functions
(RBF) [10] and the support-vector “kernel” regression (SVR)
[11]. In RBFs [9], the estimation of the parametric mixture
is attempted with a MSE-driven gradient descent [10, 12]. Its
main drawback however lies on the update of the precision
η, as the gradient turns out highly non-linear. Assuring a
stable convergence is thus a challenging task, and, apart from
exhaustive regular tiling [17], in practice only weights w and
centers μ are updated [15, 16]. SVR [11] presents comparable
drawbacks, as the variance of the Gaussian kernel must be se-
lected in advance, before the training process starts. Despite
both methods are not limited to non-negative functions, the
previous drawback prevents them to reach the type of sparse
solutions that our method promotes.

Algorithm 1 Proposed Weighted Sum of Gaussian Algorithm
Input:x, y(x), c, λ and K .
Output: Parameters v, η, μ of the model.
Initialize v, η and μ.
repeat

Obtain f(x)
for k = 1, . . . ,K do

Obtain ρk(x), ak(x) and ek(x).
Obtain yk and Hk as

yk = −∑
x ρk(x)

2ak(x)ek(x) +
[
0, 0, λ

]T
Hk =

∑
x ρk(x)

2ak(x)
[
x2, x, 1

]
Minimize ‖yk −Hkzk‖ to obtain zk.
if zk(1) < 0 or ‖yk −Hkzk‖ > 0 then

Set zk(1) = zk(2) = 0.
Obtain zk(3) = −vk and γk by solving (16).
if γk < 0 then

Set γk = 0.
Obtain −zk(3) = vk = −yT

k h
(3)
k /‖h(3)

k ‖2.
end if

end if
Recover the original parameters vk, μk, ηk from zk.

end for
until Convergence

Given that function y(x) is non-negative and summable,
it can be treated as a probability density and be decomposed
as a Gaussian mixture model (GMM) by means of the ex-
pectation maximization (EM) algorithm [23]. This popular
iterative method can be rewritten as

ρk(x) =
w

(ξ)
k g

(
x, μ

(ξ)
k , η

(ξ)
k

)
∑K

�=1 w
(ξ)
� g

(
x, μ

(ξ)
� , η

(ξ)
�

) (18a)

pk(x) =
y(x)ρk(x)∑
x′ y(x′)ρk(x′)

(18b)

w
(ξ+1)
k =

∑
x y(x)

∑
x pk(x) (18c)

μ
(ξ+1)
k =

∑
x x pk(x) (18d)

2/η
(ξ+1)
k =

∑
x

(
x− μ

(ξ+1)
k

)2
pk(x) (18e)

where ξ denotes iteration. Note that the amplitude wk (in-
stead of its log counterpart vk) and the variance (inverse of
the precision ηk) are direct outcome of the algorithm itera-
tion. Interestingly, both the EM-GMM fitting and our method
are built around the relevance of each activation function (10)
and (18a). The EM-GMM however treats the data as proba-
bilistic “mass”, while the proposed method simply performs a
regression. This conceptual difference has a profound impact
in the event of “missing data”: the EM-GMM implicitly con-
siders y(x) = 0 for values x not available during the training,
while in our algorithm the missing data is implicitly ignored,
hence keeping intact the generalization capabilities.
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5. SIMULATION RESULTS

In order to validate qualitatively the proposed method we
bring a toy experiment consisting of a non-uniform sampling
of a certain smooth function. Figure 1 illustrates this sce-
nario in vertical logarithmic scale. The EM-GMM method
(18) and two variants of our technique for c = 0 are consid-
ered: the basic one (λ = 0) and that with sparsity measures
(λ = 0.01). All techniques undergo the same initialization
and have the same size (K = 40): such a number of ac-
tivation functions exceeds by far the size required for this
scenario. From the results shown in Fig. 1 one can conclude
that the proposed method efficiently selects a reduced number
of Gaussians (about 14 here) while achieving excellent fit-
ting performance; the EM-GMM falters with non-uniformly
spaced data (as this case resembles a missing-data situation).
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Fig. 1. EM-GMM (top), proposed method with λ = 0 (mid-
dle) and λ = 0.01 (bottom). Data y(x) (dotted), fitting func-
tion f(x) (solid) and activation functions (dashed).

The second scenario selected corresponds to the parame-
terization of the power spectrum of short segments of speech,
shown in Figure 2. The data was obtained from the discrete
Fourier transform of the Gaussian-windowed segment (this
procedure gives rise to Gaussian-shaped spectral compo-
nents). The parameters are K = 40, λ = 0.01, and c = 0. In
the voiced speech segment, the proposed method converges
in few iterations (about 10), while the resulting solution ap-
proximates faithfully the actual power spectrum. The width
of the resulting Gaussian units give an indication of the tonal
components in the spectrum. In case of the unvoiced segment,
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(a) voiced speech
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(b) unvoiced speech

Fig. 2. For each case: top — signal segment, bottom —
GFM approximation (solid) of its power spectrum (dotted)
and GFM (dashed). Vertical axis in logarithmic scale.

the final mixture is more sparse, this indicating the presence
of non-tonal components. The proposed technique is planned
to be used within the method [24], proposed recently by one
of the authors, to detect and to quantify chirp-tonal/stochastic
signal components for audio analysis and coding.

6. CONCLUSIONS

The logarithmic utility function has allowed us to revamp
the highly non-linear problem of Gaussian function mix-
ture (GFM) fitting into a sequence of least squares problems.
Simulation results on the power spectrum of short speech seg-
ments illustrate the qualitative performance of the method.
Our current efforts are directed to prove and to improve the
convergence of the method, in especial when the sparsity-
promoting measures are active, the integration of model-
growing strategies, and the extension to multidimensional
spaces and to positive/negative functions.
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