
LEARNING OVERCOMPLETE SPARSIFYING TRANSFORMS FOR SIGNAL PROCESSING

Saiprasad Ravishankar and Yoram Bresler

Department of Electrical and Computer Engineering and the Coordinated Science Laboratory,
University of Illinois, Urbana-Champaign, IL 61801, USA

ABSTRACT

Adaptive sparse representations have been very popular in numerous
applications in recent years. The learning of synthesis sparsifying
dictionaries has particularly received much attention, and such adap-
tive dictionaries have been shown to be useful in applications such as
image denoising, and magnetic resonance image reconstruction. In
this work, we focus on the alternative sparsifying transform model,
for which sparse coding is cheap and exact, and study the learning of
tall or overcomplete sparsifying transforms from data. We propose
various penalties that control the sparsifying ability, condition num-
ber, and incoherence of the learnt transforms. Our alternating algo-
rithm for transform learning converges empirically, and significantly
improves the quality of the learnt transform over the iterations. We
present examples demonstrating the promising performance of adap-
tive overcomplete transforms over adaptive overcomplete synthesis
dictionaries learnt using K-SVD, in the application of image denois-
ing.

Index Terms— Sparsifying transform learning, Sparse repre-
sentations, dictionary learning, Overcomplete representations

1. INTRODUCTION

1.1. Synthesis and Analysis Models

Sparse representation of signals and images has become widely pop-
ular in recent years. Two well-known models for sparse representa-
tion are the synthesis model and the analysis model [1]. The syn-
thesis model suggests that a signal y ∈ Rn may be represented as
a linear combination of a small number of atoms from a synthesis
dictionary D ∈ Rn×K . Hence, y = Dx with x ∈ RK being sparse,
i.e., ‖x‖0 � K, and the l0 quasi norm counts the number of non-
zero entries in x. “Real world” signals are more generally assumed
to satisfy y = Dx + e, where e is an approximation/noise term in
the signal domain [2]. When K = n and D is full rank, we have
a basis representation. When K > n, the dictionary is said to be
overcomplete.

Given the signal y and synthesis dictionary D, the problem
of finding the sparse representation x is known as the synthesis
sparse coding problem [3]. The problem is to find x that minimizes
‖y −Dx‖22 subject to ‖x‖0 ≤ s, where s is the required sparsity
level. This problem is NP-hard (Non-deterministic Polynomial-time
hard). However, under certain conditions it can be solved exactly
using polynomial-time algorithms [4, 5, 6]. These algorithms are
typically computationally expensive, particularly for large-scale
problems [7].

On the other hand, the analysis model [1, 8] suggests that a sig-
nal y is sparse in an “analysis” domain, i.e., given an analysis dictio-

This work was supported in part by the National Science Foundation
(NSF) under grant CCF 10-18660.

nary Ω ∈ Rm×n, we have Ωy ∈ Rm to be sparse (‖Ωy‖0 � m).
When the signal y is contaminated with noise, it is more generally
assumed to satisfy a noisy signal analysis model, which states that
y = q + e with Ωq being sparse, and e is the noise in the signal
domain.

Given the noisy signal y and analysis dictionary Ω, the problem
of finding the noiseless q is known as analysis sparse coding [8],
with Ωq representing the sparse code. This problem is to find q by
minimizing ‖y − q‖22 subject to ‖Ωq‖0 ≤ m− l, where l is referred
to as the co-sparsity level (minimum number of zeros allowed in Ωq)
[8]. This problem too is NP-hard just like sparse coding in the syn-
thesis model. Moreover, when Ω is square and non-singular, then
q = Ω−1z for some sparse z, and the problem of finding q is iden-
tical to a synthesis sparse coding problem (of finding z), with Ω−1

being the synthesis dictionary. Similarly to sparse coding in the syn-
thesis model, approximate algorithms exist for analysis sparse cod-
ing [8, 9, 10], which however, tend to be computationally expensive.

1.2. Transform Model - A Generalized Analysis Model

Recently, we considered a generalization of the analysis model,
which we call the transform model [11]. It suggests that a signal y
is approximately sparsifiable using a transform W ∈ Rm×n. Here,
the assumption is that Wy = x + η, where x ∈ Rm is sparse, i.e.,
‖x‖0 � m, and η is the residual in the transform domain. Natural
signals and images are well-known to be approximately sparse in
analytical transform domains such as Wavelets [12], discrete cosine
transform (DCT), Ridgelets [13], Contourlets [14], and Curvelets
[15]. The transform model is a generalization of the analysis model
with Ωy exactly sparse. The generalization allows the transform
model to include a wider class of signals within its ambit than the
analysis model. Moreover, while the analysis model enforces the
sparse code (Ωy) to lie in the range space of Ω, the sparse represen-
tation x in the transform model is not forced to lie in the range space
of W . This makes the transform model more general than even the
noisy signal analysis model (cf. [11]). The reason we have chosen
the name “transform model” is because the assumption Wy ≈ x
has been traditionally used in transform coding (with orthonormal
transforms), and the concept of transform coding is older [16] and
pre-dates the terms analysis and synthesis [17].

When a suitable sparsifying transform W is known for the sig-
nal y, the process of obtaining a sparse code x of given sparsity
s involves minimizing ‖Wy − x‖22 subject to ‖x‖0 ≤ s. We call
this transform sparse coding for simplicity. This problem is easy
and its solution is obtained exactly by hard-thresholding the prod-
uct Wy (i.e., retaining only the s largest coefficients). Given the W
and sparse code x, we can also recover a least squares estimate of
the true signal y by minimizing ‖Wy − x‖22 over all y ∈ Rn. The
recovered signal is W †x, with W † denoting the pseudo-inverse of
W . Thus, unlike the previous models, the transform model allows

3088978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

for exact and fast computations, a property that has been exploited
heavily in the context of analytical sparsifying transforms.

Recent research has focused on adapting the sparse models to
data. The learning of synthesis dictionaries from training signals
has been studied by many authors [18, 19, 20]. The learnt dic-
tionaries have been shown to be useful in numerous applications
[21, 22, 23, 7, 24]. However, the synthesis dictionary learning prob-
lems are typically NP-hard and non-convex, with popular algorithms
such as K-SVD [19] likely to get caught in local minima. Another
very recent development has been the study of adaptive analysis
models. Numerous authors have attempted to learn analysis dictio-
naries [25, 26, 10, 8]. However, analysis dictionary learning is also
typically non-convex and NP-hard, and no theoretical or empirical
global/local convergence properties have been demonstrated for the
various learning algorithms.

We have very recently developed formulations and algorithms
for square transform learning [11]. The algorithms therein have a
much lower computational cost compared to synthesis and analysis
dictionary learning, and moreover, also provide convergence of the
cost and iterates regardless of initial conditions. In this paper, we
however focus on the learning of overcomplete or tall sparsifying
transforms, i.e., W ∈ Rm×n, with m > n. We illustrate the con-
vergence of our learning algorithm, and demonstrate its usefulness
in image denoising.

2. TRANSFORM LEARNING

2.1. Square Transform Learning

Given a matrix Y ∈ Rn×N whose columns represent training sig-
nals, a formulation for learning a square transform W ∈ Rn×n has
been proposed by us [11] as follows.

(P1) min
W,X

‖WY −X‖2F − λ log detW + µ ‖W‖2F

s.t. ‖Xi‖0 ≤ s ∀ i

Here, X ∈ Rn×N is a matrix with columns Xi, that are the sparse
codes of the training signals, or columns in Y . The first term in
the cost of (P1) is called sparsification error [11]. It represents the
deviation of the data in the transform domain from perfect sparsity at
sparsity level s. The − log detW penalty enforces non-singularity
of the transform W , and helps eliminate degenerate solutions such
as those with zero rows, or repeated rows [11]. The ‖W‖2F penalty
helps remove a ‘scale ambiguity’ [11] in the solution, which occurs
when the data admits an exactly sparse representation.

The − log detW and ‖W‖2F penalties are functions of the sin-
gular values of W (for detW > 0), and together additionally help
control the condition number of the learnt transform [11]. Badly
conditioned transforms typically convey little information and may
degrade performance in applications. Well conditioned adaptive
transforms have been shown to be useful in applications [11, 27].
As the parameter λ → ∞ with fixed µ/λ, the condition number
of the optimal transforms tends to 1 [11]. Note that the restriction
detW > 0, can be made without loss of generality in (P1) [11]
(one can switch from a W with detW < 0 to one with detW > 0,
trivially by pre-multiplying W with a diagonal sign matrix Γ, with
det Γ < 0). Furthermore, the detW > 0 constraint need not be
enforced explicitly in (P1). This is because the cost function has
log-barriers in the space of matrices at W with detW ≤ 0. These
log-barriers prevent an iterative minimization algorithm initialized
with W satisfying detW > 0 from getting into the infeasible
regions, where detW ≤ 0.

2.2. Overcomplete Transform Learning

We now extend (P1) to the overcomplete transform (W ∈ Rm×n,
m > n) case. For the overcomplete or tall case, we replace
log detW in (P1) with log det

(
WTW

)
, which would enable full

column rank of W . Note that in this case, det
(
WTW

)
is always

non-negative. The log det
(
WTW

)
and ‖W‖2F penalties together

help control the conditioning of the columns of W . However, good
conditioning of WTW alone is not sufficient to ensure meaningful
tall transforms. For instance, consider a tall W of the form

W =

[
W1

0m−n×n

]
where W1 is a well-conditioned square transform learnt using (P1)
and 0m−n×n is a matrix of zeros. In this case, WTW is well-
conditioned, since WTW = WT

1 W1. Moreover, W is a candidate
sparsifying ‘tall’ transform. However, such a tall W has the ambigu-
ity of repeated zero rows and the penalty log det

(
WTW

)
is unable

to preclude such a W .
Hence, we introduce an additional penalty

∑
j 6=k |〈wj , wk〉|p,

that enforces incoherence between the rows of W , denoted as wj

(1 ≤ j ≤ m). The notation 〈·, ·〉 stands for the standard inner
product between vectors. Note that larger values of p emphasize
the peak coherence. When p = 2, we can consider for example, a

W =

[
W1

W2

]
that is a concatenation of two orthonormal transforms

W1 and W2 (e.g., DCT and identity). The penalty
∑

j 6=k 〈wj , wk〉2
is, however, a fixed constant when W consists of such orthonormal
blocks, irrespective of the choice of those blocks. For this reason,
we consider p � 2 (e.g., a large even natural number), to enforce
better incoherence.

We also additionally constrain the rows of W to unit norm. Un-
der this constraint, the penalty |〈wj , wk〉| truly measures the inco-
herence (or angle) between the rows wj and wk. Thus, our problem
formulation for overcomplete transform learning is as follows.

(P2) min
W,X

‖WY −X‖2F − λ log det
(
WTW

)
+ η

∑
j 6=k

|〈wj , wk〉|p

s.t. ‖Xi‖0 ≤ s ∀ i, ‖wk‖2 = 1 ∀ k

where η > 0 weights the incoherence penalty. Note that the ‖W‖2F
penalty is a constant under the unit row norm assumption. Problem
(P2) is however, non-convex.

2.3. Algorithm and Properties

Our algorithm for solving (P2) alternates between updating X and
W . In one step called the Sparse Coding Step, we solve (P2) with
fixed W as follows.

min
X

‖WY −X‖2F s.t. ‖Xi‖0 ≤ s ∀ i (1)

The solution X̂ is computed exactly by thresholding WY , and re-
taining the s largest coefficients (in magnitude) in each column. Note
that if the l0 quasi norm for sparsity is relaxed to an l1 norm and
added as a penalty in the cost (1), we can still obtain an exact solu-
tion for X by soft thresholding [11].

3089

In the second step of our algorithm called Transform Update
Step, we solve Problem (P2) with fixed X as follows.

min
W

‖WY −X‖2F − λ log det
(
WTW

)
+ η

∑
j 6=k

|〈wj , wk〉|p

s.t. ‖wk‖2 = 1 ∀ k (2)

This problem does not have an analytical solution, and is moreover
non-convex. We could solve for W using iterative algorithms such
as the projected conjugate gradient method. However, we observed
that the alternative strategy of employing the standard conjugate gra-
dient (CG) algorithm, followed by post-normalization of the rows of
W led to better empirical performance in applications. Hence, we
choose the alternative strategy. When employing the standard CG,
we also retain the ‖W‖2F penalty in the cost for CG, to prevent the
scaling ambiguity [11].

The gradient expressions for the various terms in the cost (2) are
as follows (cf. [28]). We choose p to be an even natural number (for
simplicity), and assume det

(
WTW

)
> 0 on some neighborhood

of W , otherwise log() would be discontinuous.

∇W log det
(
WTW

)
= 2W

(
WTW

)−1

(3)

∇W ‖WY −X‖2F = 2WY Y T − 2XY T (4)

∇W

∑
j 6=k

|〈wj , wk〉|p = 2p (ZW −B) (5)

The matrices Z ∈ Rm×m and B ∈ Rm×n above have entries zij =
〈wi, wj〉p−1 and bij = ziiwij .

The computational cost per iteration (of sparse update and
transform update) of the proposed algorithm scales as O(mnN) for
learning an m×n transform from N training vectors. Note that this
cost is typically much lower than the per-iteration cost of learning
an n × K synthesis dictionary D using K-SVD [19], which scales
as O(Kn2N) [7] (assuming that the synthesis sparsity s ∝ n).

3. CONVERGENCE AND LEARNING

In this section, we illustrate the convergence of our learning algo-
rithm for (P2), and its ability to learn meaningful transforms. We
learn a 128×64 transform from the 8×8 non-overlapping patches of
the Barbara image [19]. The means of the patches are removed, and
we only sparsify the mean-subtracted patches. We fix our alorithm
parameters as s = 11, p = 20, λ = η = 4 × 105. The CG al-
gorithm in the transform update step is executed for 128 iterations
with a fixed step size of 10−9. Note that we use a weighting µ = λ
for the frobenius-norm penalty within CG. The algorithm is initial-
ized with the (vertical) concatenation of the 2D DCT (obtained as
the Kronecker product of two 8× 8 1D DCT matrices) and identity
matrices.

Figure 1 plots the objective function and sparsification error for
our algorithm over iterations. Both the objective and sparsification
error converge quickly. Moreover, the sparisifcation error improves
significantly (by more than 8 dB) over the iterations compared to
that of the initial transform (DCT concatenated with identity). We
define the normalized sparsification error [11] as ‖WY −X‖2F /

‖WY ‖2F . It measures the fraction of energy lost in sparse fitting in
the transform domain, which is an interesting property to observe
for the adapted transforms. The normalized sparsification error for
the final learnt transform is 0.08, while that for the initialization is
0.42, indicating the significantly enhanced sparsification ability of
the adapted transform.

0 100 200 300

1

2

3

4

5x 10
7

Iteration Number

O
bj

ec
tiv

e
F

un
ct

io
n

0 100 200 300
10

7

10
8

10
9

Iteration Number

S
pa

rs
ifi

ca
tio

n
E

rr
or

Learnt Transform
Initialization

0.2

0.4

0.6

0.8

1

Fig. 1. Top: Objective function vs. iterations (left), Sparsification
error vs. iterations along with the sparsification error of the ini-
tial transform (right). Bottom: Magnitude of WWT (left), Rows of
learnt transform as patches (right).

The learnt transform is shown in Figure 1, with each of its row
displayed as an 8× 8 patch, called the ‘transform atom’. The atoms
appear different from each other, and exhibit a lot of geometric and
frequency like structures, which are reflective of the fact that the
Barbara image has a lot of structure, textures. The learnt transform
is also well-conditioned with a condition number of 2.4. The magni-
tude of WWT , shown in Figure 1, indicates mostly small values for
the off-diagonal elements. The mutual coherence of W [29] (max-
imum off-diagonal magnitude in WWT) is 0.88. The results here
indicate the fast convergence of our algorithm, and its ability to learn
meaningful, non-trivial overcomplete transforms.

4. IMAGE DENOISING

Image denoising is a well-known problem of recovering an image
x ∈ RP (2D image represented as vector) from its measurement
y = x + g corrupted by noise g. We recently proposed a simple
image denoising technique [27] based on adaptive sparsifying trans-
forms. In this work, we propose the following formulation, which is
an extension of our previous technique.

(P3) min
W,xi,αi

M∑
i=1

‖Wxi − αi‖22 + λQ(W) + τ

M∑
i=1

‖Ri y − xi‖22

s.t. ‖αi‖0 ≤ si ∀ i , ‖wk‖2 = 1 ∀ k

where Q(W) = − log det
(
WTW

)
+ η

λ

∑
j 6=k |〈wj , wk〉|p repre-

sents the portion of the objective depending on only W . Operator
Ri ∈ Rn×P extracts a

√
n ×

√
n patch from the noisy image y as

Riy (we assume M overlapping patches). We model the noisy patch
Ri y as being approximated by a noiseless patch xi, that is approxi-
mately sparsifiable in a adaptive transform W (i.e., the noisy signal
transform model [11]). Vector αi ∈ Rn denotes the sparse code of
xi with si non-zeros. The weighting τ in (P3) is typically chosen as
inversely proportional to the noise level σ [21].

3090

Fig. 2. Noisy Images (left), Denoised Images (right).

Problem (P3) is non-convex. We propose a two step iterative
procedure to solve (P3). In the transform learning Step 1, we fix
xi = Ri y and si = s (fixed input s initially) in (P3), and solve for
W and αi ∀i, using the proposed overcomplete transform learning
algorithm. In the variable sparsity update Step 2, we update the
sparsity levels si for all i. For fixed W and αi, (P3) is a least squares
problem, which can be solved independently for each xi. However,
we don’t fix αi, but rather only let it be a thresholded version of
WRi y (since learning was done on Ri y), and adaptively find the
sparsity level si.

The sparsity level si for the ith patch needs to be chosen such
that the denoising error term ‖Ri y − xi‖22 computed after updating
xi by least squares (with αi held at Hsi(WRiy), where Hsi(·) is
the operator that retains the si components of largest magnitude in a
vector, and sets the remaining components to zero) is below nC2σ2

[21], with C being a fixed parameter. Note that the denoising error
term (with the updated xi) decreases to zero, as si ↗ n. Thus, find-
ing si requires in general, repeating the least squares update of xi for
each i at various sparsity levels incrementally, to determine the level
at which the error term falls below the required threshold. However,
this process can be done very efficiently (cf. [27] for details).

Once the variable sparsity levels si are chosen for all i, we use
the new si’s back in the transform learning Step 1, and iterate over
the learning and variable sparsity update steps, which leads to a bet-
ter denoising performance compared to one iteration. In the final
iteration, the xi’s that are computed (satisfying the ‖Ri y − xi‖22 ≤
nC2σ2 condition) represent the denoised patches.

Once the denoised patches xi have been estimated, the denoised
image x is obtained by averaging the xi’s at their respective loca-
tions in the image. The x is then restricted to its range (e.g., 0-255),
if known. Note that we work with mean subtracted patches in our
algorithm and typically learn on a subset of all patches (cf. [27]).
The means are added back to the denoised patch estimates.

We now present some preliminary results for our denoising
framework, using our proposed overcomplete transform learning.

The goal here is to illustrate the potential for adaptive overcomplete
transforms in this classical and prototypical application. We add
i.i.d. gaussian noise at noise level σ = 10 to the peppers image
[21]. The denoising algorithm is executed for 3 iterations with pa-
rameters n = 64, m = 100, η = λ = 8 × 106, p = 20, initial
sparsity s = 0.15 × n (rounded to nearest integer), C = 1.08, and
τ = 0.01/σ. Transform learning is executed for 80 iterations (the
weighting for the frobenius-norm term within CG is λ).

The noisy image (PSNR = 28.1 dB) is shown along with its de-
noised version (PSNR = 34.49 dB) in Figure 2. The learnt transform
in this case has a condition number of 2.1 (well-conditioned), and
also has incoherent rows (mutual coherence of 0.785). We compared
our denoising performance to that obtained with the 64×256 K-SVD
overcomplete synthesis dictionary [21, 30], which provided a lower
denoising PSNR of 34.21 dB. Our denoising algorithm also takes
less time (2.95 mins) compared to K-SVD (9.5 mins), due to the
lower computational cost of sparse coding in the transform model.
Note that we used a smaller training set for learning compared to
K-SVD, since the 100 × 64 transform has fewer free parameters.
The adapted overcomplete sparsifying transform also denoises bet-
ter than the adapted square transform [11] learnt using Problem (P1)
(PSNR for the latter is 34.38 dB), indicating the usefulness of over-
completeness.

We also repeat the denoising experiment with overcomplete
transforms for the cameraman image using a high noise of σ = 20.
The noisy image (PSNR = 22.1 dB), and its denoised version (PSNR
= 29.95 dB) are shown in Figure 2. The denoising PSNR obtained
using adaptive overcomplete transforms is better than that obtained
using the 64× 256 K-SVD synthesis dictionary (PSNR = 29.84 dB)
[21, 30]. Our denoising algorithm is also 7x faster than K-SVD [21].
(Note that we used a smaller number of 20 learning iterations here,
to prevent overfitting to high noise.) We expect the run times for our
algorithm to decrease substantially with code optimization.

Transform-based denoising has also been shown to perform bet-
ter than analysis-dictionary-based denoising [31]. We expect the de-
noising performance of our algorithms to improve/become compa-
rable to the state of the art (for example [32]) with better choice of
parameters, and with further extensions of transform learning (e.g.,
multiscale transforms).

5. CONCLUSIONS

In this work, we introduced a novel problem formulation for learn-
ing overcomplete sparsifying transforms. The proposed alternating
algorithm for transform learning involves a sparse coding step and
a transform update step. The solution of the sparse coding step is
cheap and exact, and we use iterative methods (CG) for the transform
update step. The learnt transforms have better properties compared
to the initialization. Moreover, the computational cost of overcom-
plete transform learning is lower than that of overcomplete dictio-
nary learning. We also applied the adaptive overcomplete sparsify-
ing transforms to image denoising, where they provide better per-
formance over the synthesis K-SVD, while being faster. The over-
complete transforms also denoise better than square transforms. The
promise of transform learning in other signal and image processing
applications [33] merits further study.

6. REFERENCES

[1] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus syn-
thesis in signal priors,” Inverse Problems, vol. 23, no. 3, pp.
947–968, 2007.

3091

[2] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse
solutions of systems of equations to sparse modeling of signals
and images,” SIAM Review, vol. 51, no. 1, pp. 34–81, 2009.

[3] D. Donoho, “Compressed sensing,” IEEE Trans. Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[4] J. A. Tropp, “Greed is good: Algorithmic results for sparse
approximation,” IEEE Trans. Inform. Theory, vol. 50, no. 10,
pp. 2231–2242, 2004.

[5] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Trans. Information Theory, vol.
52, no. 2, pp. 489–509, 2006.

[6] E. Candès and T. Tao, “Decoding by linear programming,”
IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4203–4215,
2005.

[7] S. Ravishankar and Y. Bresler, “MR image reconstruction
from highly undersampled k-space data by dictionary learn-
ing,” IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028–1041,
2011.

[8] R. Rubinstein, T. Faktor, and M. Elad, “K-SVD dictionary-
learning for the analysis sparse model,” in Proc. IEEE Int.
Conf. Acoust. Speech, Sig. Proc., 2012, pp. 5405–5408.

[9] R. Rubinstein and M. Elad, “K-SVD dictionary-learning for
analysis sparse models,” in Proc. SPARS11, June 2011.

[10] M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Noise
aware analysis operator learning for approximately cosparse
signals,” in Proc. IEEE Int. Conf. Acoust. Speech, Sig. Proc.,
2012, pp. 5409–5412.

[11] S. Ravishankar and Y. Bresler, “Learning sparsifying trans-
forms,” IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1072–
1086, 2013.

[12] S. Mallat, A Wavelet Tour of Signal Processing, Academic
Press, 1999.

[13] E. J. Candès and D. L. Donoho, “Ridgelets: A key to higher-
dimensional intermittency?,” Phil. Trans. R. Soc. Lond. A, vol.
357, no. 1760, pp. 2495–2509, 1999.

[14] M. N. Do and M. Vetterli, “The contourlet transform: an effi-
cient directional multiresolution image representation,” IEEE
Trans. Image Process., vol. 14, no. 12, pp. 2091–2106, 2005.

[15] E. J. Candès and D. L. Donoho, “Curvelets - a surprisingly
effective nonadaptive representation for objects with edges,”
in Curves and Surfaces, pp. 105–120. Vanderbilt University
Press, 1999.

[16] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform
image coding,” Proc. IEEE, vol. 57, no. 1, pp. 58–68, 1969.

[17] J. B. Allen and L. R. Rabiner, “A unified approach to short-
time fourier analysis and synthesis,” Proc. IEEE, vol. 65, no.
11, pp. 1558–1564, 1977.

[18] B. A. Olshausen and D. J. Field, “Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images,” Nature, vol. 381, no. 6583, pp. 607–609, 1996.

[19] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse repre-
sentation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp.
4311–4322, 2006.

[20] M. Yaghoobi, T. Blumensath, and M. Davies, “Dictio-
nary learning for sparse approximations with the majorization
method,” IEEE Trans. Signal Process., vol. 57, no. 6, pp.
2178–2191, 2009.

[21] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE
Trans. Image Process., vol. 15, no. 12, pp. 3736–3745, 2006.

[22] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for
color image restoration,” IEEE Trans. on Image Processing,
vol. 17, no. 1, pp. 53–69, 2008.

[23] H. Y. Liao and G. Sapiro, “Sparse representations for limited
data tomography,” in Proc. IEEE International Symposium on
Biomedical Imaging (ISBI), 2008, pp. 1375–1378.

[24] S. Ravishankar and Y. Bresler, “Multiscale dictionary learning
for MRI,” in Proc. ISMRM, 2011, p. 2830.

[25] G. Peyré and J. Fadili, “Learning analysis sparsity priors,” in
Proc. of Sampta’11, 2011.

[26] M. Yaghoobi, S. Nam, R. Gribonval, and M. Davies, “Analysis
operator learning for overcomplete cosparse representations,”
in European Signal Processing Conference (EUSIPCO), 2011.

[27] S. Ravishankar and Y. Bresler, “Learning sparsifying trans-
forms for image processing,” in IEEE Int. Conf. Image Pro-
cess., 2012, pp. 681–684.

[28] J. Dattorro, Convex Optimization & Euclidean Distance Ge-
ometry, Meboo Publishing USA, 2005.

[29] M. Elad, “Optimized projections for compressed-sensing,”
IEEE Trans. on Signal Processing, vol. 55, no. 12, pp. 5695–
5702, 2007.

[30] M. Elad, “Michael Elad personal page,” http:
//www.cs.technion.ac.il/˜elad/Various/
KSVD_Matlab_ToolBox.zip, 2009.

[31] S. Ravishankar and Y. Bresler, “Learning doubly sparse trans-
forms for images,” IEEE Trans. Image Process., 2012, submit-
ted.

[32] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising by sparse 3-d transform-domain collaborative filter-
ing,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–
2095, 2007.

[33] S. Ravishankar and Y. Bresler, “Sparsifying transform learn-
ing for compressed sensing MRI,” in Proc. IEEE Int. Symp.
Biomed. Imag., 2013, to appear.

3092

