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ABSTRACT

Adaptive sensing strategies have been proven to outperform tradi-
tional (non adaptive) compressed sensing, in terms of the signal to
noise ratios that can be handled, and/or the number of measurements
needed to accurately recover a signal of interest. Most existing adap-
tive sensing schemes for sparse signals, while work well in practice,
do not take into account potential structure present in the sparsity
pattern of the signal. In this paper, we focus on the Markov tree
structure inherent in the wavelet coefficients of signals, and propose
an adaptive sampling technique to recover the same. We adopt a
simple “follow the scent” strategy, and show that it outperforms tra-
ditional non adaptive techniques in practice.

Index Terms— Adaptive Algorithm, Compressed Sensing,
Probability Propagation, Hidden Markov Models

1. INTRODUCTION

Adaptive sensing methods for sparse signals [1, 2] have been proven
to outperform traditional compressed sensing [3] in the sense that in
the presence of noise, one can detect much weaker signals, and/or
one needs fewer measurements to estimate a given signal. However,
in many cases, the sparse signal to be detected has some inherent
structure present in the sparsity pattern, which most adaptive sam-
pling methods fail to take into account. Given the vast amounts of
literature that has been dedicated to non adaptive recovery of struc-
tured sparse signals (see [4, 5] and references therein) and the gains
that have been proven to achieve, it is only natural to ask if exploit-
ing structure can help in improving adaptive sampling schemes as
well.

In this paper, we aim to partially answer that query. Specifically,
we focus on adaptive recovery of wavelet transform coefficients of
a signal, that can be modeled as lying on a tree. In fact, statistical
dependencies among wavelet transform coefficients can be very ac-
curately modeled using Hidden Markov Trees (HMTs) [6, 7]. More-
over, very efficient methods exist for performing inference on such
HMT’s [8]. In inverse problems (compressed sensing, tomography,
etc), HMT’s have been used in loopy belief propagation [9], iterative
reweighing schemes [10], greedy methods [11] and that based on
Approximate Message Passing [12]. In [13], the authors proposed
a grouping scheme inspired by HMTs for the coefficients to recover
the signal in a convex manner, by solving a group lasso type algo-
rithm.

1.1. Motivating Applications

Our work finds motivation in the context of dynamic imaging in
wavelet encoded MRI [14, 15]. The goal here is to acquire images in
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a sequential manner. Assuming that one has an estimate of the DWT
coefficients of an image at some time t, one needs to efficiently ac-
quire measurements of an image at time t+∆t. Using the change in
the estimate of the coefficients as a guide, we can focus our sensing
energy in particular regions of interest, leading to a more efficient
method to acquire images in a dynamic fashion (see [16] and refer-
ences therein).

Digital Micromirror Devices (DMD’s) can be used to directly
acquire wavelet coefficients of signals. This technique has already
been used to sample wavelet coefficients in hyperspectral imaging
[17, 18]. Long acquisition times in hyperspectral imaging imply
that it cannot be used to capture moving data. One way around the
problem is to sequentially obtain compressive measurements. Such
schemes (both adaptive and nonadaptive) have been used with vary-
ing success in medical imaging, geosensing, and object recognition
and tracking. Adaptive imaging schemes have also been studied in
fluorescence microscopy [19], wherein concepts similar to hyper-
spectral imaging are applied.

1.2. Model

Letting θ ∈ Rp be the signal of interest, we propose an algorithm
to choose wavelet sensing waveformswl so that we obtain measure-
ments of the form:

yl = 〈wl,θ〉+ n n ∼ N (0, σ2)

where 〈wl,θ〉 corresponds to a particular wavelet coefficient. We
assume that we can obtain the samples yl adaptively, in thatwl can
be chosen in a sequential manner depending on past observations.

We leverage the additional knowledge that the sparsity pattern of
the wavelet coefficients of the signal follows a Markov tree structure
to design novel adaptive sampling techniques. We introduce a simple
“follow the scent” procedure that starts from the root of the tree,
predicts the states of the unobserved nodes (and estimates those of
the observed ones), and proceeds to sample the unsampled node that
has the highest probability of being active.

Although we focus on the wavelet coefficients of signals in this
paper, it is important to note that our method will work for any signal
whose sparsity pattern follows a Markov tree structure. This includes
applications in genomics, imaging, disease propagation, etc. Our
method also applies to all previously studied methods wherein the
sparsity pattern was forced to lie on a rooted tree.

Past work has proposed sampling schemes that take into account
this structure [20, 21, 16, 22]. However, a key difference between
our method and other contemporary work lies in the modeling of the
coefficients: past work assume that the sparsity pattern of the DWT
coefficients is a rooted tree, which as we argue below is not always
the case. The authors of [23] attempt to circumvent the problem
by including a dictionary learning stage that forces tree structured
sparsity patterns, but that adds extra complexity in the algorithm,
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and as is the case with all dictionary learning methods, provides no
convergence guarantees to a global optimum.

1.3. Non Rootedness of DWT Coefficients

Using an illustrative example, we show here that the DWT coeffi-
cients of signals do not always lie in a rooted tree. Consider the
standard “blocks” signal, and its Haar DWT coefficients (Fig 1). It
is possible that at a certain level j and location k, the sum of the sig-
nal values corresponding to the positive part of the Haar basis vector
cancels with that of the negative part, leading to a small (or zero)
wavelet coefficient. However, as we move to finer scales, the vari-
ations in the signal may mimic the variations in the Haar wavelet
support, resulting in large values of the corresponding coefficients,
as can be seen in Fig. 2.
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Fig. 1. ’Blocks’ and its Haar DWT

Fig. 2. (Best seen in color) Haar coefficeints in Fig. 1 arranged in
a tree. Darker regions correspond to smaller magnitude coefficients.
We see that wavelet coefficients can be small (or zero) and still have
non zero children, as denoted by the red rectangles.

The rest of the paper is organized as follows: in section 2, we
introduce our algorithm to adaptively obtain samples from a hidden
markov tree model. In section 3, we perform experiments and report
results. We conclude our paper in section 4 and propose future work.

2. ALGORITHM

In this section, we introduce our method to sample DWT coefficients
in an adaptive fashion. We first dispense with notations. We de-
note the wavelet coefficients of a signal by x ∈ Rp with, p a power
of 2 for simplicity. The coefficients can be arranged as lying on
a tree of depth J = log2(p). Lowercase letters (j, k) index the
node of the wavelet tree at scale j = 0, 1, . . . , J − 1 and location
k = 0, 1, . . . , 2j − 1 for the dyadic tree corresponding to the 1D
DWT. We focus on the 1D case in this paper to keep explanations
simple, but the method can be easily modified to apply to the 2D
case. Also, we use the MATLAB notation (0 : j0, :) to indicate all
the nodes from level 0 to j0 ∀k = {0, 1, . . . , 2j − 1}

Let x(j,k) = 〈w(j,k),θ〉. We assume we have access to point
samples of the form y(j,k) = x(j,k) + n(j,k). We model the DWT
coefficients x of a signal using a Hidden Markov Tree model [6].
We assume that each (hidden) node in the tree may take one of
two states, indicating whether the corresponding DWT coefficient
is small (0) or large (1). Letting s be the vector of state variables, we
assume the following simple model for the parameters:

P(s(j,k) = 1|s(j−1,b k
2
c) = 1) = γ (1)

P(s(j,k) = 0|s(j−1,b k
2
c) = 0) = δ

P(s(0,0) = 1) = ρ1

We model each wavelet coefficient as a 2-stage Gaussian mixture:

P(x(j,k)|s(j,k)) = (1− s(j,k))N (0, τ20 ) (2)

+ s(j,k)N (0, τ21 )

Where s(j,k) is a hidden state variable that can be either active or
inactive, and 0 ≈ τ0 � τ1. This ensures that when the state is 0(1),
the corresponding DWT coefficient will be small (large).

To perform inference on the HMT, we make use of the upward-
downward (UD) algorithm [6, 8], which we provide here for the sake
of completion. We let L(j,k)(m) be the likelihood of node (j, k)
being in statem, given observation y(j,k). For the exact formulae for
the likelihood, we refer the reader to [24]. We define the transition
probabilities:

ρ(j,k)(m|n) = P(s(j,k) = m|s(j−1,b k
2
c) = n)

The quantities p(j,k)(m) (Algorithm 1) are the final posterior (un-
normalized) state probabilities of the node (j, k) being in state m.

The UD algorithm computes P(s|y) for the entire HMT and can
be seen as Belief Propagation [25] adapted to our specific case. For
those nodes in the tree where we have not made any observations,
P(s|y) gives a prediction of the state of the node. We define

p̂(j,k) = P(s(j,k) = 1|y) :=
p(j,k)(1)

p(j,k)(1) + p(j,k)(0)
,

which gives us the probability that a node is active, given all the ob-
served measurements y. When all the nodes in the tree are measured,
as is the case for uncompressed non adaptive sensing of signals, p̂
gives the exact probability of a node being active. In our case, we
obtain only partial measurements, and use p̂ to guide our algorithm
to make future measurements.
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q(j,k)(m) =

1∑
i=0

q(j+1,2k)(i)q(j+1,2k+1)(i)ρ(j,k)(i|m)L(j,k)(i) (3)

p(j,k)(m) =

1∑
i=0

p(j−1,b k
2
c(i)ρ(j,k)(m|i)q(j+1,2k)(m)q(j+1,2k+1)(m)L(j,k)(m)

q(j,k)(i)
(4)

Algorithm 1 Upward-Downward Algorithm for Markov Trees
1: Inputs: HMT Parameters δ, γ, ρ1, τ0, τ1
2: UP STEP
3: at j = J − 1 , set
q(j,k)(m) =

∑1
i=0 ρ(j,k)(i|m)L(j,k)(i)

4: for J − 2 ≤ j ≤ 1 do
5: set q(j,k)(m) according to (3)
6: end for
7: at j = 0, set
q(0,0)(m) = q1,0)(m)q(1,1)(m)ρ(0,0)(m)L(0,0)(m)

8: DOWN STEP
9: at j = 0 set p(0,0)(m) = q(0,0)(m)

10: for 1 ≤ j ≤ J − 2 do
11: set p(j,k)(m) according to (4)
12: end for
13: at j = J − 1 set

p(j,k)(m) =
∑1
i=0

p
(j−1,b k

2
c(i)ρ(j,k)(m|i)L(j,k)(m)

q(j,k)(i)

Algorithm 2 Adaptive sensing on Markov Trees
1: Inputs: HMT Parameters δ, γ, ρ1, τ0, τ1, BudgetR, initial level
j0, sampled set S = {}

2: Initialize S = (0 : j0, :), l = |S|, y = xS + n
3: while l ≤ R do
4: Estimate p̂ using the upward-downward algorithm with ob-

servations y and parameters δ, γ, ρ1, τ0, τ1
5: Find (ĵ, k̂) : arg max(j,k)/∈S p̂
6: In case of a tie, pick a node using any strategy of choice
7: Update samples y ← y ∪ y(ĵ,k̂)
8: Update sampled set S ← S ∪ {(ĵ, k̂)}
9: l← l + 1

10: end while

2.1. Remarks

In Algorithm 2 the parameter j0 controls the initial level till which
we obtain all the samples. Usually, j0 ≈ J

2
[26]. The algorithm then

sequentially obtains noisy samples corresponding to certain nodes
of the DWT tree, and performs an exact inference procedure on the
observed nodes, and imputes the probabilities of unobserved nodes
being active. We then merely pick the node that has the highest prob-
ability of being active. The marginal and conditional probabilities at
each scale in the HMT can be computed in parallel, making the pro-
cedure highly efficient. Moreover, from (3) and Algorithm 2, it can
be seen that q(j,k) = 1 ∀(j, k) /∈ S. Hence, we can start the up-
step of the UD algorithm only from the leaves of the sampled set S,
gaining more efficiency.

To have a more realistic version of the DWT tree model, one
can replace δ, γ, ρ1, τ0, τ1 by scale-dependent quantities. We refrain
from doing so in Algorithm 2 to avoid clutter of notations. In the im-
age processing setting, we note that [7] estimated parameters for a
“universal” HMT model that we can directly plug-in to our method.

We emphasize that our focus in this paper is the algorithm to sample
adaptively on the tree, the implementation of which does not depend
on the specific state transition probabilities (δ, γ, ρ1), or variances
(τ0, τ1). In the experiments we perform, we learn the Markov tran-
sition probabilities on a scale dependent basis, or use the universal
HMT parameters [7].

2.2. Analysis

Consider a simplified model, where δ = 1, i.e. we assume that the
sparsity pattern forms a rooted tree. In this case, letting k be the
sparsity of the signal, we have the following result:

Proposition 2.1 Consider a k sparse signal, whose sparsity pattern
lies on a rooted binary tree (δ = 1). Suppose that the signal to noise
ratio per measurement is sufficiently large 1 (5) so as to allow for
accurate recovery. Then, sensing R = 2k + 1 nodes is sufficient to
recover the sparsity pattern of the signal with high probability.

Although the results are similar to what has been studied previ-
ously in the case of rooted trees, our method has the added flexibility
of being useful for more general Markovian tree structures. We only
provide a sketch of the proof, and omit the details due to space con-
straints.

Proof Sketch Suppose j0 = 0, meaning we only measure the root
node. Then, we obtain p̂(0,0). We will then proceed to measure one
of its children, since by the upward-downward algorithm we will
have

p̂(1,k) ≥ p̂(j,k) ∀j > 1

Since the sparsity pattern is rooted, we estimate atleast one of the
children to be active. Also, from the upward downward algorithm,
we see that, if j − 1 ∈ S and j /∈ S,

p̂(j,k) = γp̂j−1,b k
2
c

Hence, for some (j1 − 1, b k1
2
c) and (j2 − 1, b k2

2
c) ∈ S, and

(j1, k1), (j2, k2) /∈ S

p̂(j1−1,b k1
2
c) > p̂(j2−1,b k2

2
c) ⇒ p̂(j1,k1) > p̂(j2,k2)

This means that we will sample children of nodes that have been
deemed to be active before sampling children of nodes estimated to
be inactive.

Note that, to correctly identify a node (j, k) ∈ S to be active,
we need p̂(j,k) ≥ 0.5. This would require

y2
(j,k) ≥

2η(τ21 + σ2)(τ20 + σ2)

τ21 − τ20
(5)

where η depends on log(τ1) and γ.
Hence, following this strategy, we will measure all the k active

nodes (rooted at (0, 0)) and its children. The result then follows from
arguments similar to that in [20]

1We omit the exact values and associated proofs due to space constraints
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3. EXPERIMENTS AND RESULTS

We compared our method to the LASSO [27], using [28] to solve
the problem. We generated piecewise constant signals, of the form
considered in Fig. 1 and 2 of length p = 1024, having 20 “pieces” at
randomly chosen locations. The magnitude of the pieces was chosen
to lie randomly in [−1, 1]. We varied the number of measurements
from 40 to 280 in steps of 40, and repeated each test 100 times. We
learned the (scale dependent) parameters γ(j), δ(j), τ(0,1), ρ1 using
a test set of size 10000. Fig 3 shows the MSE as we increase the
number of measurements taken, for two values of AWGN standard
deviation. j0 was set to 5. For the LASSO, we considered a Gaus-
sian measurement matrix with unit norm rows, and pick a regulariza-
tion parameter that works best from a fixed grid. Such a clairvoyant
scheme is not possible in practice, since we do not have access to the
true signal.
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Fig. 3. Comparison to the LASSO. We see that we obtain supe-
rior performance to standard compressed sensing, with higher gains
when there is noise present in the measurements.

We considerd a noisy σ = 0.02 version of the normalized 64×
64 section of the cameraman image, and fixed our budget to be 2100,
700 for each quad-tree in the 2D-DWT (Fig 4). For the LASSO, we
considered an i.i.d. Gaussian measurement matrix of size 2100 ×
4096, and normalized it so that the rows were of unit norm. We
see that our method outperforms the LASSO, and does marginally
better than Adaptive Compressed Sensing [26] with threshold (τ =
σ
√

2 log(n) ), and the Tree Structured Bayesian Compressed Sens-
ing (Variational Bayes) [22]. The parameters for the HMT were
taken to be the uHMT parameters from [7]. We set j0 = 3.

Finally, we test Proposition 2.1. We consider noiseless measure-
ments of piecewise constant signals of length 4096 with δ = 1, τ0 =
0.001, τ1 = 3, and vary γ, and hence k, the number of non zeros in
the signal. We fix the sampling budget to be 2k + 1. Fig. 5 plots
the Hamming distance between the supports of the estimate and the
true signal, averaged over 100 runs. As before, we consider the same
number of Gaussian measurements for the LASSO, with unit norm
rows, and pick the regularization parameter from a grid.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an adaptive sampling technique that
takes into account the parent-child dependencies of the DWT co-
efficients of a signal. We work with a more realistic model for the

(a) LASSO PSNR = 19.83 dB (b) ACS PSNR = 21.05 dB

(c) TS-BCS PSNR = 22.17 dB (d) Markov PSNR = 22.73 dB

Fig. 4. Comparison of our method (Markov) to the LASSO for a
section of the Cameraman image. We also compare our method to
[26] (ACS), and [22] (TS-BCS).
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Fig. 5. We see that 2k + 1 measurements suffice to recover the
signal support adaptively, while the LASSO fares far worse. For
the lasso to achieve comparable results, we add an extra factor of
log(n) = log(4096) ≈ 9× measurements. dist(S, S∗) denotes the
Hamming distance between the true and recovered supports

coefficients, and showed that our method outperforms standard non-
adaptive compressed sensing methods, even with a very simplistic
assumption on the HMT.

Although we focus on the wavelet coefficients of signals in this
paper, it is important to note that our method will work for any signal
whose sparsity pattern can be expressed as lying on a Markov tree.
This involves applications in genomics, imaging, dictionary learn-
ing, etc. Our method also applies to all previously studied methods
wherein the sparsity pattern was forced to lie on a rooted tree.

We propose to analyze our method in more detail in the future.
Specifically, we aim to extend proposition 2.1 to general Markov tree
models. We also aim to derive SNR bounds for the signal amplitude,
for which our method will recover the signal accurately.
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