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ABSTRACT

This paper proposes a regularized Adaboost learning algo-
rithm to extract binary fingerprints by filtering and quantiz-
ing perceptually significant features. The proposed algorithm
extends the recent symmetric pairwise boosting (SPB) algo-
rithm by taking feature sequence correlation into account. In-
formation and learning theoretic analysis is given. Significant
performance gains over SPB are demonstrated for both audio
and video fingerprinting.

Index Terms— Content identification, fingerprinting,
learning theory, mutual information

1. INTRODUCTION

The problem of fingerprint-based content identification (ID)
has received considerable attention from both academia and
industry. YouTube uses content ID to detect copyrighted au-
dio and video uploads in real time. Shazam and SoundHound
use it for music identification on mobile devices. Other ap-
plications include advertisement tracking, broadcast monitor-
ing, copyright control, and law enforcement [1, 2, 3]. The
fingerprinting algorithm encodes signal into a short finger-
print which allows for real-time search. The fingerprint must
be robust to various content-preserving distortions, while be-
ing discriminative enough to distinguish perceptually differ-
ent signals.

Many fingerprinting algorithms have been proposed based
on various signal features [1, 2, 3, 4]. A theoretical frame-
work for fingerprint-based content ID systems was presented
in [5], and derived a fundamental relation between database
size and query length under some statistical assumptions. De-
coding of correlated fingerprints is studied in [6, 7] and the
related problem of physical object identification is studied in
[8]. Fingerprinting algorithms that employ a variation of Ad-
aboost to select filters and quantizers, such as Asymmetric
Pairwise Boosting (APB) [9] and Symmetric Pairwise Boost-
ing (SPB) [10, 11], have demonstrated excellent content ID
performance.

This paper presents two contributions. First, we provide
an information theoretic analysis of SPB and show that each
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iteration of SPB maximizes a lower bound on the mutual
information between matching fingerprint pairs. Second,
we propose a regularized Adaboost algorithm, which tackles
SPB’s implicit assumption that signal frames are statistically
independent which does not hold in practice because of frame
overlapping. The proposed algorithm is tested on both audio
and video content ID systems, demonstrating significantly
better performance than SPB.

Notation: we follow the convention that uppercase letters
represent random variables while lowercase letters represent
particular realizations of these random variables. A vector is
denoted by an underscore (e.g., f ) and a temporal sequence
by a boldface letter (e.g., f).

2. STATEMENT OF THE CONTENT ID PROBLEM

Following [5], a content database is defined as a collection of
M elements, x(m) ∈ XN ,m = 1, 2, . . . ,M , each of which
is a sequence of N frames {x1(m), x2(m), . . . , xN (m)}. A
frame could be a short video segment, a short sequence of im-
age blocks, or a short audio segment. Frames may be overlap-
ping spatially, temporally, or both, to prevent misalignment
during matching [1].

The problem is to determine whether a given query con-
sisting of L < N frames, y ∈ XL, is related to some element
of the database, and if so, identify which one. To this end,
an algorithm ψ(·) must be designed, returning the decision
ψ(y) ∈ {0, 1, 2, . . . ,M}, where ψ(y) = 0 indicates that y is
unrelated to any of the database elements.

3. STRUCTURED CONTENT ID CODES

In this paper, we restrict our attention to the following fairly
general class of fingerprint-based content ID codes. The
codes of [1, 10, 11] among others, fall in this category.

Definition 1 [12] A (M,N,L) structured content ID code
for a size-M database populated with XN -valued content
items, and granularity L, is a pair consisting of a mapping
ϕ : X → F generating an encoding function Φ : XN →
FN that returns a fingerprint f = Φ(x) with components
fi = ϕ(xi) for each 1 ≤ i ≤ N , and a decoding function
ψ : FL → {0, 1, . . . ,M} returning m̂ = ψ(Φ(y)).
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Hence the mapping ϕ is applied independently to each
frame. It might be convenient to impose additional struc-
ture on the code. For instance, the mapping ϕ : X → F
in [10, 11] is obtained by applying a set of J optimized fil-
ters to each frame and quantizing each of the J real-valued
filter outputs to four levels. Hence F takes the form AJ with
A = {a, b, c, d}. In this case we view the fingerprint as an
array f = {fij , 1 ≤ i ≤ N, 1 ≤ j ≤ J} and the query
fingerprint as an array g = {gij , 1 ≤ i ≤ L, 1 ≤ j ≤ J}
where i denotes time and j filter index. We also use the no-
tation f = {fj , 1 ≤ j ≤ J} for the subfingerprint associ-
ated with a given frame. We also write ϕ in vector form as
ϕ = {ϕj , 1 ≤ j ≤ J}. The length of the binary subfinger-
print f is J log2 |A|.

The decoding function ψ, in most content ID systems,
measures distance between fingerprints [10, 11, 5, 7]. If the
distance is less than a predefined decision threshold τ , the
fingerprint is declared as a match for the query. This is a
variable-size list decoder: the number of matches could be 0,
1, 2 or more. Alternatively a single-output decoder might be
used, returning only the index of the closest match. In this
paper, Hamming distance metric with a list decoder is used to
make a fair comparison with the SPB algorithm of [10, 11].

4. SPB FOR FILTER AND QUANTIZER SELECTION

Primitive signal processing features such as filters and quan-
tizers had been heuristically chosen until learning-based
methods, such as Adaboost, were proposed [9, 10, 11].
Adaboost-chosen filters and quantizers outperform the heuris-
tically chosen ones [9, 10, 11].

The symmetric pairwise boosting (SPB) algorithm [10,
11] operates as follows. A training set T , {(xt, yt, zt) ∈
X 2 × {±1}, t ∈ T } is comprised of a subset T+ of |T |/2
matching pairs and a subset T− of |T |/2 nonmatching pairs,
where a pair (xt, yt) ∈ X 2 is said to be matching if the sec-
ond signal is a distorted version of the first, and nonmatching
if the two signals are independent. The binary variable (la-
bel) zt is equal to 1 (resp. -1) if (xt, yt) is matching (resp.
nonmatching). Define a set of J weak classifiers hj : X 2 →
{±1}, 1 ≤ j ≤ J , as

hj(x, y) =

{
+1 if ϕj(x) = ϕj(y)
−1 otherwise (1)

where ϕj is parameterized by a filter λj : X → R and a
quantizer Qj : R → A,

ϕj(x) = Qj(λj(x)). (2)

Denote by H the class of feasible classifiers (indexed by the
choice of filters and quantizers).

A popular family of filters is the Haar-like filters used in
[9, 10, 11] which are easy to compute and rich enough to de-
scribe perceptually significant visual features. The filter out-
puts for the 3-D Haar-like filters in [11] are the average differ-
ence between values in light and dark regions shown in Fig. 1.

Fig. 1. 3-D Haar-like filters [11]: (a) spatio-temporal average,
(b) temporal difference, (c,d) spatial difference, and (e,f) spatio-
temporal difference.

Input: training set T , {(xt, yt, zt) ∈ X 2×{±1}, t ∈ T }
Initialization: define equal weights w(1)

t = 1/|T |, ∀t ∈ T
Do for j = 1, . . . , J

1. Choose the classifier hj that minimizes the weighted error
over h ∈ H

ej =
∑
t∈T

w
(j)
t 1{h(xt, yt) ̸= zt}. (3)

2. Compute αj = 1
2
log

1−ej
ej

.
3. Update the weights

w
(j+1)
t = w

(j)
t exp{−αjzthj(xt, yt)}.

4. Normalize the weights so that
∑

t∈T w
(j+1)
t = 1.

Output: J pairs of filter and quantizer {(λj , Qj)}Jj=1 parame-
terizing the chosen J classifiers {hj}Jj=1.

Table 1. Adaboost for filter and quantizer selection.

To reduce the computational complexity of the training, a lim-
ited number of candidate quantizers are evaluated.

The SPB algorithm is an adaptation of the well-known
Adaboost classification algorithm given in Table 1. Upon
completion of the algorithm, Adaboost would output the
boosted classifier hB(x, y) , sgn

[∑
1≤j≤J αjhj(x, y)

]
.

However [10, 11] do not use the boosted classifier, only the
filter λj and quantizer Qj associated with each hj are used to
produce the fingerprints.

5. CONTENT ID CAPACITY

A content ID system, like any other communication system,
is subject to a fundamental capacity limit that upper bounds
the rate at which information can be decoded with arbitrarily
low probability of error. For an iid signal process X, mem-
oryless degradation channel, and fixed structured content ID
code (Def. 1) with mapping ϕ : X → F , the content ID
capacity is given by C = I(F ;G) [5]. If ϕ is a code de-
sign parameter, then C = maxϕ I(F ;G). If the signal X
is an ergodic stationary process and the degradation channel
from X to Y is stationary ergodic, one may conjecture that
C = maxϕ I(F;G) where I(F;G) is the mutual information
rate between the random process F and G. The mutual in-
formation rate is a nondecreasing function of the number of
filters J , which is fixed here.

6. INFORMATION THEORETIC ANALYSIS OF SPB

In this section, we show that, at each iteration 1 ≤ j ≤ J ,
SPB maximizes a lower bound on the mutual information
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I(Fj ;Gj) = H(Fj) − H(Fj |Gj) associated with the joint
probability distribution PFjGj induced by the choice (2) of
ϕj . Indeed it follows from (3) that SPB selects the weak clas-
sifier that minimizes the weighted error:

hj = argmin
h∈H

[∑
t∈T+

w
(j)
t 1{h(xt, yt) = −1}

+
∑
t∈T−

w
(j)
t 1{h(xt, yt) = 1}

]
, (4)

where the two error terms are the empirical weighted false-
negative and false-positive error probabilities, respectively.
For a given classifier h ∈ H, the empirical version of the
false-negative error probability for matching fingerprints,
Pe,j = PFjGj (Fj ̸= Gj), is given by

P̂e,j = P̂r(Fj ̸= Gj |T+, h) =
∑
t∈T+

w
(j)
t 1{h(xt, yt) = −1},

and the empirical version of the false-positive error probabil-
ity, PFjPGj (Fj = Gj), is

P̂r(Fj = Gj |T−, h) =
∑
t∈T−

w
(j)
t 1{h(xt, yt) = 1}.

First, we derive a link between P̂r(Fj ̸= Gj |T+, h) and
H(Fj |Gj). Fano’s inequality gives

H(Fj |Gj) ≤ h2(Pe,j) + Pe,j log(|A| − 1), (5)

where Pe,j = PFjGj (Fj ̸= Gj), A is the alphabet for scalar
fingerprint introduced in Section 3, and h2(Pe,j) is the bi-
nary entropy function [13]. We have observed that inequality
(5) is tight. In Fig. 2a, we show the empirical equivocation
Ĥ(Fj |Gj) and Fano’s upper bound h2(P̂e,j)+P̂e,j log(|A|−
1) evaluated from 16,000 matching pairs and 16 classifiers.
Thus, minimizing P̂r(Fj ̸= Gj |T+, h) is equivalent to mini-
mizing a tight upper bound on H(Fj |Gj).
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Fig. 2. (a) Ĥ(Fj |Gj) and H(P̂e,j)+ P̂e,j log(|A|−1). (b) Ĥ(Fj)

and − log P̂r(Fj = Gj). The x-coordinate is the classifier index j.

Next, we derive a link between P̂r(Fj = Gj |T−, h) and
H(Fj). When Fj and Gj are generated from nonmatch-
ing pairs, we model them by a product distribution with
identical marginals. From Lemma 2.10.1 in [13], we have
PFjPGj (Fj = Gj) ≥ 2−H(Fj), for two iid random variables
Fj and Gj . Then H(Fj) is lower bounded by

H(Fj) ≥ − logPFjPGj (Fj = Gj). (6)

Again, we can verify the tightness of (6) from nonmatching

pairs, see Fig. 2b. Thus, minimizing P̂r(Fj = Gj |T−, h) is
equivalent to maximizing a tight lower bound on H(Fj).

From the above argument, we conclude that each itera-
tion 1 ≤ j ≤ J of SPB simultaneously minimizes an upper
bound onH(Fj |Gj) and maximizes a lower bound onH(Fj),
thus maximizes a lower bound on I(Fj ;Gj) = H(Fj) −
H(Fj |Gj).

However, frames are temporally overlapped to over-
come misalignment during matching, which leads to tem-
porally correlated fingerprints Fj = {F1j , F2j , . . . , FLj}
for each chosen classifier hj . In a memoryless channel
where each Gij only depends on Fj only via Fij , we have
I(Fj ;Gj) ≤

∑L
i=1 I(Fij ;Gij) [13]. Equality holds when

{F1j , F2j , . . . , FLj} are independent. Conversely, I(Fj ;Gj)

≪
∑L

i=1 I(Fij ;Gij) when {F1j , F2j , . . . FLj} are highly
correlated. Thus we can increase the mutual information by
decorrelating temporal fingerprints. Many frame-wise dis-
tortions can be modeled as memoryless channels, including
resizing, cropping and rotation.

In the next section, we show that the classifiers’ ability to
decorrelate frames differs dramatically across different types
of filters. In order to increase mutual information by decorre-
lating temporal fingerprints, we propose to use a regularizer
to effectively eliminate those filters that generate highly cor-
related fingerprints from the candidate pool H. Experiments
demonstrate the effectiveness of this regularizer.

7. REGULARIZED ADABOOST

For a given filter λ (such as those from Fig. 1), the response
λ(X) = {λ(Xi), 1 ≤ i ≤ L} is a L-dimensional random vec-
tor. Denote by ρ(s, t) ∈ [−1,+1] the correlation coefficient
between two random variables λ(Xs) and λ(Xt). Define the
average correlation coefficient of λ(X) as

ρ(λ) , 1

L2 − L

∑
s̸=t

|ρ(s, t)|. (7)

The functional ρ(λ) captures the filter’s ability to decor-
relate overlapping frames and can be easily estimated from
the training dataset. In Fig. 3, we show the estimated ρ(λ)
for the family of Haar-like filters of Fig. 1 applied to video
data. Within the family, type (b), (e) and (f) filters can decor-
relate overlapping frames extremely well, type (a) and (c) fil-
ters produce almost perfectly correlated responses, and type
(d) filters produce moderately correlated responses.

In our new regularized Adaboost algorithm, filters with
large average correlation coefficient are penalized with the
new objective function

eREG
j =

∑
t∈T

w
(j)
t 1{h(xt, yt) ̸= zt}+ γρ(h), (8)

where γ is the tuning parameter which can be chosen by
cross-validation and ρ(h)=ρ(λ) indicates the weak classifier
h is parameterized by the filter λ. The regularized Adaboost
is obtained by simply replacing (3) in Table 1 with (8) .
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Fig. 3. Average correlation coefficient ρ(f) for the family of Haar-
like filters on video frames.

8. CONVERGENCE OF THE REGULARIZED
ADABOOST ALGORITHM

The Discrete Adaboost algorithm in Table 1 (with pre-
dictor variable (X,Y ) and binary response variable Z)
admits a known interpretation as an iterative procedure
for fitting an additive logistic regression model [14, 15]
δ(x, y) =

∑
1≤j≤J αjhj(x, y) under the exponential loss

function. For regularized Adaboost, the loss function is now
the regularized exponential loss

L(z, δ(x, y)) , exp{−zδ(x, y)}+γ
∑

1≤j<J

2 sinh(αj)ρ(hj).

At iteration j, we solve

(αj , hj) = arg min
α∈R,h∈H

[∑
t∈T

w
(j)
t exp{−αzth(xt, yt)}

+ 2 sinh(α)γρ(h)

]
, (9)

where w(j)
t = exp{−ztδj−1(xt, yt)} and

δi(x, y) ,
∑

1≤j≤i

αjhj(x, y).

Using the fact that h(x, y) ∈ {−1, 1} and
∑

t∈T w
(j)
t = 1,

the objective function of (9) can be rewritten as

2 sinh(α)

[∑
t∈T

w
(j)
t 1{h(xt, yt) ̸= zt}+ γρ(h)

]
+ e−α·

(10)
The minimum over h ∈ H is given by

hj = argmin
h∈H

∑
t∈T

w
(j)
t 1{h(xt, yt) ̸= zt}+ γρ(h). (11)

Plugging hj into (10) and solving for α, we obtain

αj =
1

2
log

1− eREG
j

eREG
j

, (12)

where eREG
j is given by (8). Equation (11) and (12) are equiv-

alent to Step 1 and 2 of the regularized Adaboost algorithm.
Notice that the above derivation does not depend on the

specific form of ρ(h). As long as the regularizer is a func-
tional of h, it can be plugged into the regularized Adaboost
algorithm, which makes this approach fairly general.

9. EXPERIMENTAL RESULTS
We follow the experimental setups in [10] and [11] with J =
8 and L = 4 for audio fingerprinting and J = 16, L = 41

for video fingerprinting. A set of matching and nonmatching
pairs is randomly selected from the training dataset, where
matching pairs consist equal amount of each distortion. The
audio distortions considered are 64 kbps lossy compression
using WMA encoding, addition of a 20% echo, and band-
pass filtering in the 0.4-4 kHz range. The video distortions
considered are 50% cropping, vertical mirroring, frame rota-
tion at 15 degrees and frame shifting downward and left by
100 pixels each. We consider geometric distortions only as
they represent the most challenging video distortions to de-
tect, and SPB works nearly perfectly for simple distortions,
such as lossy compression, resizing, and frame rate change
[11] (so does regularized Adaboost). For the weight of the
regularizer γ, values between 0.1 and 0.3 worked well in our
experiments. The results shown are obtained using γ = 0.2.

To quantify ID performance, we plot the receiver oper-
ating characteristics (ROC) curves for different distortions.
Each point on the curve represents a false negative rate and
false positive rate pair corresponding to a decoding threshold
τ . As shown in Fig. 4 and Fig. 5, irrespective of the signal
type used, regularized Adaboost outperforms SPB for all the
considered distortions.
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Fig. 4. ROC curves for audio distortions: (a) 20% echo; (b) WMA
compression + bandpass filtering.
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Fig. 5. ROC curves for video distortions: (a) cropping; (b) vertical
mirroring; (c) rotation; (d) shift.
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