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ABSTRACT
In this paper, we extend a new framework introduced as ac-
tive content fingerprinting in [1] 1 that takes the best from the
two worlds of content fingerprinting and digital watermark-
ing to overcome some of the fundamental restrictions of these
techniques in terms of performance and complexity. In the
proposed framework, contents are modified in a way similar
to watermarking to extract more robust fingerprints in con-
trast to conventional content fingerprinting. We investigate
the performance of two modulation techniques based on uni-
dimensional shrinkage and multidimensional lattice quanti-
zation. The simulation results on real images demonstrate the
high efficiency of the proposed methods facing low-quality
compression and additive noise.

Index Terms— Content identification, content finger-
printing, watermarking, lattice quantization/decoding.

1. INTRODUCTION

Content based identification (CBI) systems are facing numer-
ous requirements related to identification accuracy, complex-
ity, privacy, security as well as memory storage [2]. To ad-
dress the trade–off between these conflicting requirements,
content fingerprints are used [3], [4]. A content fingerprint is
a short, robust and distinctive content description. The main
idea behind content fingerprinting consists in the extraction of
a lower dimensional representation of the content in a secret
subspace, obtained by a projection to a set of secret carriers or
a selection of carriers based on a secret key from a commonly
used transform that spans the whole space [2], [3], [4].

In conventional content fingerprinting, the fingerprint is
extracted directly from the original content and does not re-
quire any content modification that preserves the original con-
tent quality. In this sense, it can be considered as a passive
content fingerprinting (pCFP). The extracted fingerprints re-
semble random codes, for which no efficient decoding algo-
rithm is known as for structured codes. Moreover, the perfor-
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mance of pCFP is not satisfactory due to the high probability
of error.

For these reasons, active content fingerprinting (aCFP)
was proposed in [1], where the basic idea was introduced and
a feasibility study revealed higher performance w.r.t. pCFP
and digital watermarking. Albeit there are still several open
issues such as an optimal modulation scheme in unidimen-
sional case, the decoding complexity based on a bounded dis-
tance decoder (BDD) and last but not least, no extension to
multidimensional case was considered.

This paper is a continuation of the work begun in [1],
where the authors introduced two strategies of modulation:
Additive aCFP (AddaCFP) and Quantization–based aCFP
(QbaCFP). In this sequel, we introduce a new modulation
scheme which has better performance in terms of distortion
and error probability. In the last part of the paper, we extend
our work to modulation in multidimensional space to achieve
lower complexity and distortion by exploiting lattices. The
reasons to exploit lattices is twofold: multidimensional lat-
tices such as Leech-lattice [5] are well known for their low
distortion quantization due to the sphere packing property.
Secondly, due to the structure of lattices, there exist several
low complexity quantization/decoding methods, especially
for Leech-lattices [6], [7], [8]. We have investigated the
bounded-distance decoder of [7]. Their implementation uses
at most 519 real operations per decoded point. Since their im-
plementation decodes only a finite subset of the Leech lattice,
we have slightly modified the implementation to approximate
the decoding of the entire Leech lattice. The proposed al-
gorithms are tested on a set of real images from the UCID
database [9].

2. CONTENT FINGERPRINT IN SECRET SUBSPACE

Since most fingerprinting and digital watermarking systems
operate in some transform domain, we define the direct and
inverse transforms applied to the content x ∈ XN as:{

x̃i= wT
i x, 1 ≤ i ≤ N,

x =
∑N
i=1 x̃iwi =

∑
i∈K x̃iwi +

∑
i/∈K x̃iwi,

(1)
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where x̃i indicates the i-th element of the projected vector x̃,
wi ∈ RN , 1 ≤ i ≤ N , are the columns of the orthogonal
projection matrix W ∈ RN×N , W = (w1,w2, . . . ,wN )T ,
and the set K = {i1, i2, · · · , iL} with cardinality L repre-
sents a set of indices defined by the secret key k. In the part
of theoretical analysis, we will assume that this transform is
based on a randomized orthogonal matrix W, i.e. a random
projection (RP) transform, whose elements are equally likely
wi,j = {± 1√

N
}. Such a matrix can be considered as an ap-

proximate orthoprojector, for which WWT ≈ IN , and the
basis vectors are of a unit norm [2].

In aCFP, we will consider the modification of the original
content in the secret subspace defined by the secret key k with
the overall goal to improve the performance of identification
in terms of the probabilities of bit–error and overall identifi-
cation error as well as reducing complexity. For this purpose,
we define a general form of aCFP as:

v =
∑
i∈K

ϕi(x̃
∗)wi +

∑
i/∈K

x̃iwi, (2)

where v is the modified content using the inverse transform,
x̃∗ = {x̃i}i∈K denotes the projected coefficients in the secret
subspace defined by the secret key k, ϕ(x̃∗) is the modulation
function applied to the vector x̃∗ and ϕi(x̃∗) implies the i-th
element of the modulation output.

Definition: D is the distortion measure per dimension be-
tween sequences x and v, defined by:

D =
1

N
E
[
‖V −X‖22

]
=

1

N
E
[
‖S‖22

]
, (3)

where S =
∑
i∈K

(
ϕi(X

∗)− X̃∗i
)
wi

2 denotes the modula-
tion signal that can be considered as a kind of watermark by
analogy to digital watermarking. In the case of pCFP, D = 0
while aCFP will be characterized by the distortion determined
by the modulation function ϕ(·).

Assuming an additive noise observation channel, in the
context of theoretical performance analysis:

Y = V + Z, (4)

where Z denotes the channel distortion, one is interested in
estimating the level of degradations to the fingerprint ex-
tracted from the degraded content Y.

Throughout the theoretical parts of the context, we as-
sume that a content can be modelled as a Gauss-Markov pro-
cess with variance σ2

X and evaluate the performance of all
methods under the additive white Gaussian noise (AWGN)
with variance σ2

Z .
Given a secret key k and the corresponding set of secret

carriers, the query fingerprint extraction is performed as:

fy = f(ỹ∗) = f(ϕ(x̃∗) + z̃∗) (5)

2A scalar random variable is denoted by a capital letter X , its realization
is denoted by the lower case letter x ∈ X . As for vectors, a boldface capital
letter X denotes a random vector X = {Xi}Ni=1, a boldface lower case
letter x represents its realization x = {xi}Ni=1 ∈ XN .
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Fig. 1: Shrinkage based aCFP.

where z̃∗ is a collection of projected coefficients of z̃ in a se-
cret subspace defined by k. As shown in [2], applying random
projections defined in (1) on the data, which can be modelled
by a Gauss-Markov process, makes projected coefficients un-
correlated. Consequently, one can assume that projected coef-
ficients in the secret subspace follow i.i.d. Gaussian distribu-
tions, i.e., Z̃∗ ∼ N (0, σ2

ZIL) and X̃∗ ∼ N (0, σ2
XIL), where

N (µ, σ2) stands for the Gaussian distribution with mean µ
and variance σ2.

The performance metric of CBI is defined by the probabil-
ity of correct identification Pci based on the bounded distance
decoder (BDD):

Pci =

M∑
m=1

Pr{d(Fy, fx(m)) ≤ θL⋂
m′ 6=m

d(Fy, fx(m′)) > θL|Hm}Pr{Hm}, (6)

where θ ≥ 0 is a threshold and L is the length of fingerprint,
Hm corresponds to the case that Fy is related to themth entry
of the database, d(·, ·) denotes a decoding metric, and we as-
sume that all entries will be queried with the same probability,
i.e., ∀m,Pr{Hm} = 1

M .

2.1. Unidimensional case: Shrinkage based aCFP

To trade–off between the modulation distortion and the bit
error rate (BER) along with AddaCFP and QbaCFP intro-
duced in [1], we introduce a new modulation scheme based
on shrinking.

Definition: Shrinkage based active content fingerprinting
(SbaCFP) is defined by the scalar modulation function of the
form (Fig. 1):

ϕs(x̃
∗
i ) =

{
γ sign(x̃∗i ), |x̃∗i | ≤ γ,
x̃∗i , |x̃∗i | > γ,

(7)

where x̃∗i is the i-th element of x̃∗, and γ ≥ 0. The distortion
of SbaCFP per content sample is:

Ds =
1

N
E
[
‖Ss‖22

]
= 2

L

N

∫ γ

0

(γ − t)2pX̃∗(t)dt (8)

where pX̃∗ = N (0, σ2
X). In this scheme, the fingerprint ex-

tractor function is just the sign function: ψ(t) = sign(t). The
fingerprint is then calculated during enrollment as:
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fxi = ψ(ϕs(x̃
∗
i )) = sign(ϕs(x̃

∗
i )), i ∈ K.

The fingerprint computed at the identification stage is:
fyi = ψ(ỹ∗i ) = sign(ỹ∗i ) = sign(ϕs(ỹ

∗
i ) + z̃i), i ∈ K,

where ỹ∗i similar to x̃∗i is a projection coefficient in the se-
cret subspace defined by k. The performance of SbaCFP is
determined by the BER and is given by:

Pb−SbaCFP = Pr{sign(X̃∗i ) 6= sign(Ỹ ∗i )} = E

[
Q

(
|ϕs(X̃∗)|
σZ

)]

= 2

∫ γ

0

Q

(
γ

σZ

)
pX̃∗(t) dt+ 2

∫ ∞
γ

Q

(
t

σZ

)
pX̃∗(t) dt

= 2Q

(
γ

σZ

)[
1

2
−Q

(
γ

σx

)]
+ 2

∫ ∞
γ

Q

(
t

σZ

)
pX̃∗(t) dt.

(9)

Finally, the probability of correct identification in the CBI
using SbaCFP Pci−SbaCFP based on the BDD is given by:

Pci−SbaCFP =
1

M

M∑
m=1

Pr

{
dH(fx(m),Fy) ≤ θL

⋂
m′ 6=m

dH(fx(m′),Fy) > θL

∣∣∣∣Hm
}

(a)
=

θL∑
d=0

(
L

d

)
εd(1− ε)L−d

[
1

2L

L∑
j=d+1

(
L

j

)]M−1

,

where dH(·, ·) denotes the Hamming distance, ε = Pb−SbaCFP
is the cross-over probability of the binary symmetric channel
between fx(m) and fy under Hm, (a) follows from the fact
that dH follows B(L, ε) underHm, and follows B(L, 0.5) for
other contents. B(L, ε) denotes a binomial distribution with
L trials and probability of success ε.
Remark 1. For the case that θ = 0, the correct identifi-
cation occurs when there is an exact match between fy and
fx(m) under Hm. The probability of correct identification
is Pci−SbaCFP = (1 − ε)L. Such a decoder corresponds to
crypto-like hash matching under the assumption of errorless
fingerprinting.

Therefore, the overall goal of a aCFP is to reduce BER
to such a level that ensures high Pci without a need of com-
plex fingerprint matching. Table 1 shows BERs for differ-
ent aCFP schemes and the lower bound (LB) in digital wa-
termarking (DWM) [1]. Fig. 2 compares the BER rate in
SbaCFP with other modulations AddaCFP, QbaCFP and LB
in watermarking for a fixed Document to Watermark ratio
(DWR), DWR = 10 log10

σ2
X

D and Document to Noise ratios

(DNRs), DNR= 10 log10
σ2
X

σ2
Z

, in a range of [0, 25] dB.

2.2. Multidimensional case: Lattice based aCFP

Moreover, to achieve lower decoding complexity and distor-
tion, we extend our analysis to lattice based quantization as a
vector modulation function.

Table 1: BERs in pCFP and aCFP methods versus lower
bound(LB) in DWM.

Technique Distortion D Probability Pb

D
W

M

Lower bound (LB) L
N α

2 Q
(
α
σZ

)

Fi
ng

er
pr

in
tin

g pCFP 0 1
π arctan

(
σZ

σX

)
AddaCFP L

N α
2 E

[
Q
(
|X̃∗|+α
σZ

)]
QbaCFP L

N α
2 Q

(
η
σZ

)
SbaCFP equation (8) equation (9)

where α > 0 and η = σX

√
2
π

(
1 +

√
1 + π

2

(
α2

σ2
X

− 1
))

[1].

Definition: Lattice based active content fingerprinting
(LbaCFP) is defined by the vector modulation function of the
form:

ϕΛ(x̃∗) = QΛ(x̃∗ + n)− n, (10)

where QΛ(·) is the lattice based quantization using the lattice
Λ ⊂ RL with the generator matrix G and the fundamental
Voronoi region V , and n is the dither 3, which is Nyquist-G,
i.e., ΦN(Ht) = δ(t), where H = 2πG−T and ΦN(·) is the
characteristic function of random vector N [10].

The distortion of LbaCFP per content sample is:

DΛ =
1

N
E
[
‖SΛ‖22

]
=

1

N
E

[∑
i∈K

(ϕΛi
(X̃∗)− X̃i)

2

]

=
1

N
E

[∑
i∈K

e2
i

]
=

1

N
E
[
‖e‖2

] (a)
=

L

N
G(Λ,V)V 2/L,

where (a) follows from the fact that the error vector e is uni-
formly distributed over V [10] and G(Λ,V) is the normalized
second moment of the lattice Λ with the Voronoi region V and
V = det(G) is the volume of V .

In this scheme, the fingerprint extractor function is the
identity function, i.e., ψ(x) = x. The fingerprint at the en-
rollment stage is:

fx = ψ(ϕΛ(x̃∗)) = ϕΛ(x̃∗).

The fingerprint computed at the identification stage is:
fy = ψ(ϕΛ(ỹ∗)) = ϕΛ(ỹ∗) = ϕΛ(fx + z̃∗),

where z̃∗ is a collection of projected coefficients of z̃ in a se-
cret subspace defined by k and Z̃∗ ∼ N (0, σ2

ZIL) [2]. Con-
sequently, one can consider the lattice quantizer as a decoder
under AWGN.

The performance of the CBI using LbaCFP can be upper
bounded for Pci as follows, for any γeff ≤ σ2

Z :

3The dither can be key-dependent.
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Fig. 2: Comparison of different aCFP scheme and Lower
Bound (LB) in DWM, with DWR = 22dB, N = 2048 and
L = 32.

Pci =

M∑
m=1

Pr

{ ∑
ỹ∗∈V(fx(m))

p(ỹ∗|fx(m))

∣∣∣∣Hm
}

Pr{Hm}

(a)

≤ 1

M

M∑
m=1

Pr{‖fx(m)− Ỹ∗‖22 ≤ γeffL|Hm}

(b)
= Pr{‖fx(1)− Fy‖22 ≤ γeffL|H1}
(c)

≤ exp

(
−L

(
γeff

2σ2
Z

− 0.5 ln
γeffe

σ2
Z

))
,

where γeffL is the radius of a sphere that has the same vol-
ume as the Voronoi region V , (a) holds since the value of the
probability density of the AWGN at any point of a sphere of
radius r is larger than it is at any point outside of the sphere,
(b) follows due to the assumption that fx(i) 6= fx(j) for all
i 6= j and all the Veronoi regions have the same geometry,
and (c) follows from the Cramer-Chernoff bound [11].

3. NUMERICAL EVALUATION

In this section, we evaluate the performance of CBI using
UCID database [9], consisting of 1338 image of size 384 by
512. To extract feature vector from each image, an image
is converted to gray scale and divided in 16 by 16 blocks
and the 2D DCT of each block is computed. The feature
vector is constructed by concatenating the DCT coefficients
at the coordinates (1, 2) inside each block [2] resulting in
a vector of length N = 768. Finally, the fingerprint of
length L from each feature vector is extracted by using RP
followed by different modulation approaches considered in
Section 2. Table 2 shows the parameters of the modula-
tion schemes and their average embedding distortion over all
images in UCID based on Peak Signal to Distortion Ratio
(PSDR= 10 log10( 2552

D )) and the average of the mean struc-
tural similarity index (MSSIM) [12] to quantitatively evaluate
the imperceptibility of the modulations. In order to have a
fair comparison between the performance of the modulators
in terms of memory storage, embedding rate, and complex-

ity, we investigate their performance for L = 24 in LbaCFP
(Leech Lattice dimension) and corresponding L = 192 in
SbaCFP, and we set θ = 2

192 for BDD used in SbaCFP
to have approximately the same decoding complexity w.r.t.
Leech Lattice BDD. Moreover, to evaluate the performance
of SbaCFP in low embedding rate, we show also its perfor-
mance for L = 24 and θ = 0. We evaluate the ability of the
identification system to correctly identify an image after it has
undergone the potential malicious attacks listed in Table 3.

The unidimensional SbaCFP demonstrates remarkable
performance for low-rate case (L = 24), while for L = 192,
which corresponds to L = 24 in the LbaCFP, the lattice
scheme outperforms the unidimensional counterpart. The
performance of SbaCFP can be improved by increasing θ.
However, it would require higher decoding complexity.

Table 2: Different modulation schemes.

Modulators Parameters PSDR MSSIM
SbaCFP L = 192, γ = 60 53 dB 0.999

L = 24, γ = 125 53 dB 0.999
LbaCFP scale= 70, L = 24 53 dB 0.999

Table 3: List of attacks tested and the corresponding proba-
bility of correct identification, real P̂b and predicted Pb BERs.

Modulators Attack Parameters Performance
Pci P̂b Pb

SbaCFP
L = 192
θ = 2/L
γ = 60

AWGN
PSNR

30 dB 1 0 0
25 dB 1 0 0
20 dB 0.97 0.003 0.0026
15 dB 0.17 0.035 0.03

JPEG
QF

40 1 0 0
25 1 0 0
5 0.13 0.028 0.02

LbaCFP

AWGN
PSNR

30 dB 1
25 dB 1
20 dB 1
15 dB 0.83

JPEG
QF

40 1
25 1
5 0.95

SbaCFP
L = 24
θ = 0
γ = 125

AWGN
PSNR

30 dB 1 0 0
25 dB 1 0 0
20 dB 1 0 0
15 dB 0.95 0.002 0.0018

JPEG
QF

40 1 0 0
25 1 0 0
5 0.97 0.001 0.0006

Conclusions
In this paper, we study the performance-complexity trade-
off in content identification based on aCFP. Both proposed
schemes remarkably outperforms QIM. The lattice also offers
low identification complexity for broad range of applied dis-
tortions. While the unidimensional SbaCFP is well suited for
the moderate distortions using low complexity BDD or even
direct hash based matching.
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