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ABSTRACT

This paper presents a new countermeasure for the protection
of automatic speaker verification systems from spoofed, con-
verted voice signals. The new countermeasure exploits the
common shift applied to the spectral slope of consecutive
speech frames involved in the mapping of a spoofer’s voice
signal towards a statistical model of a given target. While
the countermeasure exploits prior knowledge of the attack in
an admittedly unrealistic sense, it is shown to detect almost
all spoofed signals which otherwise provoke significant in-
creases in false acceptance. The work also discusses the need
for formal evaluations to develop new countermeasures which
are less reliant on prior knowledge.

Index Terms— automatic speaker verification, biomet-
rics, spoofing, imposture, countermeasures

1. INTRODUCTION

It is widely acknowledged that automatic speaker verification
(ASV) systems are vulnerable to spoofing. While earlier work
considered the threat from classical spoofing attacks such as
impersonation [1,2] or replay [3,4], that from more advanced
attacks has attracted more recent attention. Over the last six
years attacks from voice conversion [5–8], speech synthe-
sis [9, 10] and artificial signals [11] have all been shown to
provoke significant increases in the false acceptance rate of
state-of-the-art ASV systems.

Reassuringly, as has been the case for other biometric
modalities, e.g. face recognition [12–14], the speaker recog-
nition community has started to address the problem through
efforts to develop specific spoofing countermeasures [15–20].
Prior work to develop spoofing countermeasures has focused
mostly on those aspects of the speech signal not used for
recognition. Several works have demonstrated increased ro-
bustness to spoofing stemming from speech synthesis through
the use of prosodic features and phase [15–17]. Based on the
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assumption that phase information is generally lost during
voice conversion, the utility of phase-related features to de-
tect voice conversion was investigated in [18,19]. While both
approaches are effective in reducing false acceptance rates,
spoofing is however far from being a solved problem.

Our work in the EU Tabula Rasa project1, which aims to
develop spoofing countermeasures for a number of different
biometric modalities, has shown voice conversion to be par-
ticularly difficult to detect. This work considered an approach
to voice conversion originally proposed in [7]. It shows the
limitations of ASV systems when only the spectral slope is
altered. As such, converted speech retains real-speech phase
information. Attacks of this nature will thus have the potential
to overcome the countermeasures proposed in [15–20]. This
paper reports a new countermeasure which exploits the reduc-
tion in pair-wise distances between consecutive feature vec-
tors when they are both shifted towards the same local max-
ima of the likelihood function of a target speaker model as
a consequence of voice conversion. We accept that the pro-
posed countermeasure exploits prior knowledge of the spoof-
ing attack and discuss this issue later in the paper.

The remainder of this paper is organized as follows. The
voice conversion approach and new countermeasure are pre-
sented in Sections 2 and 3, respectively. Experimental work
is described in Section 4. Finally our conclusions and ideas
for future work are presented in Section 5.

2. VOICE CONVERSION

All work reported in this paper was conducted with our imple-
mentation of the approach to voice conversion originally pro-
posed in [7]. It was developed to test the limits of ASV when
the vocal tract information in the speech signal of a spoofer is
converted towards that of another, target person. At the frame
level, the speech signal of a spoofer denoted by y(t) is filtered
in the spectral domain as follows:

Y ′(f) =
|Hx(f)|
|Hy(f)|

Y (f) (1)

where Hx(f) and Hy(f) are the vocal tract transfer functions

1http://www.tabularasa-euproject.org
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Fig. 1: An illustration of voice conversion in feature space
showing the shift of two consecutive feature vectors towards
a common local maxima. We usually expect c < d.

of the targeted speaker and the spoofer respectively. Y (f) is
the spoofer’s speech signal whereas Y ′(f) denotes the result
after voice conversion. As such, y(t) is mapped or converted
towards the target in a spectral-slope sense, which is sufficient
to overcome most ASV systems.

Hx(f) is determined from a set of two Gaussian mixture
models (GMMs). The first, denoted as the automatic speaker
recognition (asr) model in the original work, is related to ASV
feature space and utilized for the calculation of a posteriori
probabilities whereas the second, denoted as the filtering (fil)
model, is a tied model of linear predictive cepstral coding
(LPCC) coefficients from which Hx(f) is derived. LPCC fil-
ter parameters are obtained according to:

xfil =

M∑
i=1

p(giasr|yasr)µi
fil (2)

where p(giasr|yasr) is the a posteriori probability of the Gaus-
sian component i given the frame yasr and µi

fil is the mean
of the Gaussian gifil tied to the Gaussian giasr. Hx(f) is esti-
mated from xfil using an LPCC-to-LPC transformation and a
time-domain signal is synthetized from converted frames with
a standard overlap-add technique. Full details can be found
in [7, 21, 22].

From Equation 1 we note that this approach to voice con-
version retains real-speech phase and excitation. In conse-
quence, the approaches to detect converted voice and synthe-
sized speech reported in [15–20] will not detect speech con-
verted according to the approach described above.

3. SPOOFING COUNTERMEASURE

The work presented in this paper is conducted with full prior
knowledge of the spoofing attack. We accept that this is
wholly unrealistic of a practical spoofing scenario but must
be content with such an approach. Future evaluations with
independent efforts in spoofing and countermeasures will fa-
cilitate the development of the latter without prior knowledge
of the spoofing attack(s).
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(a) (normalized) asr feature space
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(c) LPC space

Fig. 2: An illustration of the pair-wise distance between con-
secutive feature vectors for asr, LPCC and LPC parameteri-
sations. Profile shown for genuine speech (solid line profiles)
and converted voice (dashed line profiles).

3.1. Features

Voice conversion shifts the spectral slope of a spoofer towards
that of a target, according to Equation 2. Note that if the term
µi
fil is replaced by µi

asr, then Equation 2 is identical to the
expectation step in the Expectation Maximization (EM) algo-
rithm [23].

The principal behind our countermeasure exploits the ex-
pected shift of consecutive feature frames towards the same,
closest local maxima of the likelihood function of a particular
target model. This principal is illustrated in Figure 1 for two
consecutive feature vectors in a two-dimensional space. Un-
der such conditions the relative distance between consecutive
feature vectors (red squares) will be reduced (blue triangles)
whereas the density of features surrounding the local maxima
will be increased. Accordingly we have investigated a new
countermeasure to detect this phenomenon in order to distin-
guish between converted voice and a genuine speech signal.

We conducted initial experiments independently from
ASV to validate this phenomenon. Figure 2 shows plots of
the n− 1 consecutive, pairwise distances for n frames of ex-
ample genuine speech and converted voice signals. Plots are
illustrated for the same feature sets discussed in Section 2. As
shown in Figure 2(a), the differences between genuine speech
and converted voice is relatively low in the (normalized) asr
feature space; the two profiles are more or less identical. For
LPCC space (b), the differences are more significant and in
LPC space (c) they are particularly pronounced. Since LPC
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Fig. 3: A block diagram of the integrated ASV system and
proposed countermeasure.

pair-wise distances exhibit the greatest differences between
genuine speech and converted voice, they are used in all
subsequent experiments reported here.

Finally, even though we predict increases in cluster den-
sity as a result of voice conversion, initial experiments to ob-
serve changes in variance were discouraging and thus the use
of variance estimates was not pursued further.

3.2. Detection

A block diagram of the integrated ASV system and proposed
countermeasure is illustrated in Figure 3. The countermeasure
is speaker-dependent and exploits differences in the distribu-
tion of pairwise distances between test data s[n] and that used
to train the target model in question. The percentage over-
lap between the two distributions forms a score which is then
thresholded to classify s[n] as either genuine speech or con-
verted voice. When the two distributions are normalised, the
percentage overlap lies between zero and unity. Lower scores
indicate genuine speech whereas higher scores indicate con-
verted voice.

As in other prior work [10,19], and illustrated in Figure 3,
the proposed countermeasure is integrated with the ASV sys-
tem as an independent post processing step. Claimed identi-
ties are thus only accepted if a test signal s[n] attains a like-
lihood higher than the ASV threshold and a countermeasure
score lower than its threshold. As discussed later, the combi-
nation of two independent classifiers makes assessment some-
what troublesome.

4. EXPERIMENTAL WORK

Here we report experiments to assess the performance of the
new countermeasure.

4.1. ASV systems

Experiments were conducted with five ASV systems used
within the EU Tabula Rasa project. They are all based on the

LIA-SpkDet toolkit [24] and the ALIZE library [25] and are
directly derived from the work in [26]. In all cases the speech
signal is divided into frames of 20ms with a frame overlap
of 10ms. All systems use a common parameterization where
features extracted using SPro [27] are composed of 16 linear
frequency cepstral coefficients (LFCCs), their first derivatives
and delta energy. A common energy-based speech activity
detection (SAD) system is also used to remove non-speech
frames and all systems use a common universal background
model (UBM) with 1024 Gaussian components.

The first ASV system is a standard Gaussian mixture
model (GMM) system with a UBM denoted (GMM-UBM).
The second system includes channel compensation based on
factor analysis (FA) according to the symmetrical approach
presented in [28]. The third system is a support vector ma-
chine (SVM) classifier which is applied to GMM supervectors
coming directly from the GMM-UBM system. It is referred
to as a GMM supervector linear kernel system (GSL). The
fourth system is almost identical to the third but is enhanced
with nuisance attribute projection [29] to attenuate interses-
sion (interchannel) variability, with NAP matrices of rank 40.
The fifth approach is a GSL system with FA supervectors
(GSL-FA) [26].

4.2. Protocols and metrics

Speech data used for UBM learning comes either from the
NIST Speaker Recognition Evaluation 2004 (NIST‘04) or
NIST‘08 datasets depending on whether the resulting GMM
is used for the baseline ASV systems or for the conversion
system respectively. Background data used for nuisance at-
tribute projection (NAP) and factor analysis (FA) comes from
the NIST‘04 dataset.

The male subset of the NIST‘05 dataset is used for de-
velopment of both ASV systems and the countermeasure,
whereas the NIST‘06 dataset is used for evaluation. As
in [20], all experiments relate to the 8conv4w-1conv4w con-
dition – where one conversation provides an average of 2.5
minutes of speech (one side of a 5 minute conversation). To
ensure no overlap between data used for ASV or countermea-
sures and data used for voice conversion, only one of the 8
training conversations is ever used for the former whereas the
other 7 are set aside for learning voice conversion models.

Standard NIST protocols dictate in the order of 1000 true
client tests and in the order of 10,000 impostor tests for devel-
opment and evaluation datasets. In all spoofing experiments,
both the number of true client tests and impostor tests are
the same as for the baseline, but the speech samples of each
impostor test is converted toward the corresponding client
model. Finally, given the consideration of spoofing and with-
out any specific, standard operating criteria, the equal error
rate (EER) is preferred to the minimum detection cost func-
tion (minDCF) for ASV assessment. The countermeasure is
assessed independently of ASV, also in terms of EER.
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Error EER (%) FAR (%)
System Baseline Spoofing Baseline Spoofing

GMM-UBM 9 32.6 6 77
GSL 8.5 37.2 6 88
GSL-NAP 7 32.1 3 84
FA 5.5 24.4 1 54
GSL-FA 6.5 30.3 2 82

Table 1: ASV performance in terms of EER and FAR for a
fixed FRR of 10%.

4.3. Voice conversion system and countermeasure setup

While it is admittedly not representative of real scenarios, we
assess countermeasure performance in a worst case scenario,
where the attacker/spoofer has full prior knowledge of the
ASV system. The front end processing used in voice con-
version is thus exactly the same as that used for ASV. The
filtering model and filter Hx(f) uses 19 LPCC and LPC co-
efficients respectively.

The countermeasure operates on the same 19th order LPC
vectors recalculated from a time domain signal s[n] in Fig-
ure 3. Frame blocking is the same as for ASV systems and
voice conversion (although different frame lengths do provide
similar results). We take into account only those frames deter-
mined to contain voiced speech. Voiced speech was detected
using the robust algorithm for pitch tracking (RAPT) [30] in
the VOICEBOX toolkit2 with a default configuration.

4.4. Results

We report the effect of voice conversion on the five ASV sys-
tems considered and then the performance of the proposed
countermeasure to detect converted voice.

A summary of verification performance in terms of EER
for the evaluation set is illustrated in Table 1 for all five ASV
systems. Also shown are false acceptance rates (FARs) for a
corresponding false rejection rate of 10%. Results show that
the EERs of all five ASV systems increase significantly when
impostor tests are replaced with converted voice. Only the FA
system shows an EER of less than 30% whereas that for the
GSL system increases to almost 40%. The scale of the threat
is perhaps best illustrated in terms of FAR which increases
from 6% to 88% for the GSL system and from 1% to 54% for
the FA system.

Ideally, we would report similar EER and FAR statistics
for the full system when the countermeasure is integrated with
ASV. This is a non-trivial problem, however, for which stan-
dard evaluation protocols have yet to be defined. While this
work is underway in the EU Tabula Rasa project, before it is

2http://http://www.ee.ic.ac.uk/hp/staff/dmb/
voicebox/voicebox.html

Fig. 4: A DET profile illustrating countermeasure perfor-
mance

complete we prefer to assess countermeasures independently
from ASV.

Countermeasure performance is illustrated with a DET
plot in Figure 4. It illustrates performance as a two-class prob-
lem to distinguish genuine speech from converted voice. The
new countermeasure is shown to perform exceptionally well
and delivers an EER of 2.7%.

5. CONCLUSIONS AND FUTURE WORK

This paper investigates the protection of automatic speaker
verification (ASV) systems from spoofing with converted
voice. While five tested ASV systems show considerable
vulnerabilities, the new countermeasure is shown to be con-
sistent and extremely effective in detecting spoofed speech
signals.

While the work reported in this paper is successful in
overcoming the specific attack considered, in reality system
designers and countermeasure developers cannot assume such
prior knowledge. Thus, of far greater significance to the com-
munity, is the need for formal evaluations to stimulate the re-
search of spoofing countermeasures in a setting where the ex-
act nature of spoofing attacks is unknown and varied. The
development of effective countermeasures will then be ex-
tremely challenging.
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