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ABSTRACT

Researchers have been recently challenging the robustness of
forensic algorithms by designing antiforensic strategies that
try to fool them. In this paper, we propose an antiforen-
sic strategy that targets double image compression detectors
based on Benford’s law (or first digit law). The proposed ap-
proach is able to modify the first digit statistics of the consid-
ered data (a double compressed image) to fool single/double
compression detectors based on Benford’s law. In this way,
the proposed strategy tries to mimick the effects of a single
compression with limited additional distortion. The presented
algorithm performs better than previous state-of-the-art an-
tiforensic strategies and can be easily extended to other fraud
detection methods.

1. INTRODUCTION

Altering and tampering a digital image is a relatively-easy
task considering the wide availability of image editing soft-
ware and the versatility of digital formats. As a consequence,
several image tempering detection approaches have been de-
signed in order to find out whether an image has been altered
or not.

Within the research fields connected to image tampering
detection, a significant role is played by algorithms that are
developed to detect the artifacts left by compression [1]. Most
of the digital images are available in compressed format, and
therefore, any processing step can be associated with a de-
coding and a re-encoding operations. Compression opera-
tions leave some traces in the reconstructed image (referred
as “footprints”). By detecting and identifying these traces, it
is possible to understand if an image was compressed once or
more [2].

From these premises, several double compression detec-
tion algorithms have been recently proposed in literature (e.g.,
[3]). They are mainly based on the analysis of the statistics
related to the quantized transform coefficients. Many of them
rely on the so-called Benford’s law (or first digit law), which
permit revealing double compression by analyzing the prob-
ability mass function (pmf) of the most significant decimal

digit (also called first digit) of the quantized transform coef-
ficients [2, 4, 5]. Though these forensic techniques are quite
suitable for detecting standard image manipulations, they do
not account for the possibility that a forensic-aware adversary
may enact anti-forensic modifications to hide traces of image
manipulation and recompression. A recent work has shown
that such operations can be designed to successfully fool ex-
isting image forensic techniques [6]. Most of antiforensic
strategies targeting double compression operate on the recon-
structed image after the first compression altering the data to
disguise the traces of the first coding stage [7]. However, at-
tacking a specific detection algorithm permits minimizing its
detection accuracy more effectively with respect to the use of
a generic antiforensic techniques that tries, for example, to
reconstruct the first order statistics of the transformed coeffi-
cients.

In this paper, we target the double compression detectors
that are based on Benford’s law. More precisely, our approach
operates after the second compression on the DCT coefficient
statistics in order to make the pmf of their first digits (FDs)
conforming to distribution expected for a single compressed
image. The approach proves to be more effective with re-
spect to the approach in [6] since it is possible to make a
double-compressed image look like a single-compressed im-
age at a lower cost in terms of distortion. Moreover, since the
approach generically manipulates the data according to their
statistics, it can be easily extended to other forensic applica-
tions where Benford’s law is employed (e.g., financial verifi-
cations, election fraud detection, etc..). Moreover, since the
approach aims at smoothing the oscillation in FD probability
derived from coefficient statistics after double compression,
the approach could work for other detectors operating on the
coefficient histogram.

In the following, Section 2 briefly describes how double
JPEG compression detectors work and how antiforensic al-
gorithms try to fool them. Section 3 presents Benford’s law,
while Section 4 describes the proposed algorithm. Section 5
compares the performance of the approach with some state-
of-the-art solutions and Section 6 draws the final conclusions.
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2. ANTIFORENSICS OF DIGITAL IMAGES

Most digital images are available on-line in compressed for-
mat, and nearly 90 % of them are coded according to the
JPEG standard [8]. After color space conversion, a JPEG
coder divides the input image into blocks X of 8 × 8 pixels.
These are then transformed into blocks Y of coefficients by
applying a bidimensional Discrete Cosine Transform (DCT)
on them. Considering a generic transform coefficient block
Y, each element is quantized into an integer index Y∆1

Y 1
∆1

(i, j) = sign(Y (i, j))round
(
|Y (i, j)|
∆1(i, j)

)
, (1)

where the indexes (i, j) denote the position of the elements
within the 8 × 8 block. The values Y 1

∆1
(i, j) are converted

into a binary stream by an entropy coder that follows a zig-
zag scan that orders coefficients according to increasing spa-
tial frequencies. The coded block can be reconstructed by ap-
plying an inverse DCT transform on the rescaled coefficients
Y 1
r (i, j) = Y 1

∆1
(i, j) · ∆1(i, j). Note that the quantization

step ∆1(i, j) changes according to the index (i, j) of the DCT
coefficient and is usually defined by means of a quantization
matrix. In the IJG (Independent JPEG Group) implementa-
tion, the quantization matrix is selected by adjusting a quality
factor (QF), which varies in the range [0, 100]. The higher QF,
the higher the quality of the constructed image. The block Y1

r

is then inversely-transformed to the block X1
r and the decoded

image is then reconstructed.
When the image is encoded a second time, the resulting

quantization levels are

Y 2
∆2

(i, j) = sign(Y 1
∆1

(i, j))round
( |Y 1

∆1
(i, j) ·∆1(i, j)|
∆2(i, j)

)
,

(2)
where ∆2(i, j) are the quantization steps of the second com-
pression stage.

Every quantization step introduces some coding artifacts
on the reconstructed coefficients that can be exploited by a
forensic analyst to estimate the number of compression stages
and the adopted coding parameters (e.g., ∆).

More precisely, the pmf of Y 1
r (i, j) presents a comb-like

shape derived from quantization such that the associated non-
zero coefficient levels Y 1

∆1
(i, j) are distributed according to a

geometric probability mass function [6]. As for coefficients
Y 2
r (i, j), it is possible to verify that they still follows a comb-

like distribution, but the pmf of Y 2
∆2

(i, j) does not follow a
geometric probability mass function. Verifying these con-
ditions permits detecting whether an image has been com-
pressed once or twice.

However, it is possible to operate some manipulations on
the blocks Y1

r or X1
r in order to make X1

r look like uncom-
pressed.

The antiforensic approach proposed in [6] considers that
the pmf of Y1

r presents a comb-like shape, and this property

allows a forensic analyst to detect that block X1
r has been

compressed. It is possible to add some dither noise N(i, j)
to Y 1

r (i, j) so that the resulting coefficients Y ′1r (i, j) =
Y 1
r (i, j) + N(i, j) present a probability density function

close to a Laplacian variable, i.e., p(a) = β/2 exp(−β|a|).
In case the noise N(i, j) is accurately shaped, the block X′1r ,
which has been reconstructed from Y′1r , can be compressed a
second time into block X2

r , and the statistics of the associated
transform coefficients Y′2r presents a comb-like structure as
if a single compression has been applied.

However, it is possible to obtain a better performance
by targeting the specific double compression strategy that is
adopted by the forensic analyst. Unlike [6], the approach
proposed in this paper operates after the second compression
stage on the coefficients Y2

∆2
in order to tackle a detec-

tor based on the so-called Benford’s law (presented in the
following section).

3. BENFORD’S LAW FOR DIGITAL COMPRESSED
IMAGES

In order to detect double JPEG compression, many ap-
proaches have been proposed in literature. Many of these
rely on detecting the violation of the so-called Benford’s
law (also known as first digit law or significant digit law)
[9]. Given the most significant digit or first digit m of a
strictly-positive integer Y (in base-10 notation)

m = FD (Y ) =

⌊
Y

10blog10 Y c

⌋
, (3)

Benford’s law [9] is satisfied whenever the probability mass
function (pmf) of m can be well-approximated by the equa-
tion

p(m) = N log10

(
1 +

1

m

)
or (4)

p(m) = N log10

(
1 +

1

β +mα

)
(generalized), (5)

where N is a normalizing factor and α, β are the parame-
ters characterizing the model. This property can be verified
for many real-life sources of data and can be used effectively
in detecting alterations and frauds, like double and multiple
compression in JPEG images [5].

More precisely, the empirical pmf p̂(m) of the first digit
is computed for transform coefficients located at the most sig-
nificant spatial frequencies, and the interpolating Benford’s
equation p(m) is computed on them. Then, the differences
between p(m) and p̂(m) are classified; many solutions em-
ploy approaches based on Support Vector Machine (SVM) to
evaluate how well p̂(m) is fitted by the statistics of p(m) (see
[5, 4, 3]).

It is possible to generalize the classification operated by
SVM using the Kullback-Leibler (KL) divergence between
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p(m) and p̂(m), i.e.,

DKL(p ‖ p̂) =

9∑
m=1

p(m) ln
p(m)

p̂(m)
(6)

taking inspiration from [10]. In case the average KL-
divergence associated to all the considered DCT coefficients
is lower than a given threshold TKL (which is set by the foren-
sic analyst), the image is considered as single compressed.
Otherwise, it is deemed to be double compressed.

Even in the case an image is single compressed, the ob-
served KL-divergence is not zero (since fitting could not be
perfect). In this case, let D1

KL be the KL divergence be-
tween the empirical pmf p̂(m) for a single-coded image and
its fitted Benford’s equation p(m). Similarly, let D2

KL be the
equivalent KL divergence for the same image coded twice.
Antiforensic algorithms can modify the reconstructed image
after the first compression in order to make D2

KL as close as
possible to D1

KL (or at least lower than TKL). The price to be
paid for this alteration is an additional distortion in the recon-
structed image (which can be measured by quality indexed
PSNR or SSIM indexes). As a matter of fact, an effective al-
gorithm should obtain a KL divergence D2

KL < TKL with a
minimum quality decrement.

4. THE PROPOSED ALGORITHM

As mentioned in the previous section, an analyzed image can
be considered as single compressed if the first digit statistic
p̂(m) proves to be close to the fitted Benford’s model p(m)
of eq. (4). In alternative to the traditional antiforensics ap-
proach presented in the last part of the previous section, an
image tamperer can alter directly the coefficients Y 2

∆2
(i, j) of

the image after the second quantization in order to shape the
resulting p̂(m) such that D2

KL → D1
KL.

Since most of the double compression detectors based on
Benford’s law process coefficients separately depending on
their spatial frequencies, the proposed antiforensic algorithm
groups the coefficients Y 2

∆2
(i, j) of an image into arrays ci,j

related to position (i, j) in the transform block. In the follow-
ing we will omit the coordinates (i, j) for the sake of concise-
ness. Every elements of the array c = [ck] can be associated
to its first digit mk (grouped into the array m = [mk]).

For every array m it is possible to compute p̂(m) and
compute the Benford’s model p(m) that minimizes the dif-
ference d(m) = (p̂(m) − p(m)) for m = 1, . . . , 9. Then, it
is possible to divide the set of possible values for m into two
subsets Mp = {m|d(m) > 0} and Mn = {m|d(m) < 0}.
The shaping algorithm needs to transfer part of the probabil-
ities associated to p̂(m) in Mp to those in Mn in order to fit
p̂(m) to p(m). This can be done converting coefficient values
ck such thatmk ∈Mp into values c′k such that FD(c′k) ∈Mn

minimizing the resulting distortion in the reconstructed im-
age.

Let us assume that we want to modifyK coefficients. This
budget is assigned to different value inMp. LetK(m) denote
the number of coefficients with FDm that we want to modify,
i.e., K =

∑
m∈Mp

K(m). Similarly, let K ′(m) be the nega-
tive number of coefficients with FD m ∈Mn that we want to
generate in the array c (K =

∑
m∈Mn

−K ′(m)).
For every value cn, the algorithm computes the distortion

ek,m′ = min{|ck −m′10o(k)|, |ck −m′10o(k)+1|} (7)

where o(nk) is the order of the first digit, i.e., o(k) =
blog10 |ck|c. In this case, ek,m′ characterizes the distor-
tion produced by converting ck with FD m into the closest
value with first digit m′.

Given a certain FD value m ∈ Mp such that K(m) > 0,
the approach considers the set of coefficient indexes Cm =
{k|mk = m} and finds out

(k∗,m∗) = arg min
k,m′

ek,m′

s.t. k ∈ Cm,m′ ∈Mn

and K ′(m′) < 0.

(8)

The coefficient ck∗ is then converted into eitherm∗10o(k
∗)

or m∗10o(k
∗)+1, according to its proximity, and counters

K(m) and K ′(m∗) are updated as follows, K(m) ←
K(m)− 1 and K ′(m∗)← K ′(m∗) + 1. The process is iter-
ated as long as there are couples m,m′ such that K(m) > 0
and K ′(m′) < 0.

The approach is similar to iterative water filling [11] for
power allocation in MIMO channels, despite in this case the
objective is a redistribution of data with minimum distortion.

In the following section, we will show the performance
of this approach both on generic exponential variables and on
real images.

5. EXPERIMENTAL RESULTS

The test reported here have been obtained with images from
UCID database [12]. We compressed them twice with differ-
ent couples of quantization factors (QF1, QF2), where QF1

is adopted at the first compression stage andQF2 is employed
in the second compression. The performance was evaluated
measuring the average D1

KL and D2
KL over all the possible

FD distributions obtained from histograms of coefficients at
different spatial frequencies. In this work we limited the an-
tiforensic alteration to a subset of spatial frequencies since
most of the double compression detectors limit their analysis
to a subset of frequencies (see [4, 3]). However, the process-
ing can be easily extended to all the spatial frequencies at the
expense of a stronger distortion and a lower reliability of the
forensic detector.

Fig. 1 reports the KL-divergence obtained by our ap-
proach (labelled antif ) and the approach in [6] (labelled
dith ) for the image indexed as 790 in the considered
database as a function of the PSNR decrement between the
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Fig. 1. Comparison performance for algorithms antif and
dith on image 790. The graphs report the values of KL
divergence as a function of different metrics. Rate-Distortion
performance is reported as well. Quantization steps are ∆1 =
7 and ∆2 = 9. (a) KL div. vs. ∆PSNR; (b) KL div. vs.
∆SSIM.

original coded twice image and the one to which antiforen-
sic technique is applied (Fig. 1a) and the SSIM decrement
(Fig. 1b). It is possible to notice that the dith algorithm,with
respect to the proposed algorithm, requires an additional 0.2
dB reduction in the PSNR value to obtain a divergence value
equal to 0.08. The same efficiency can be noticed looking at
the decrement in the SSIM value (Fig. 1b). It is possible to
see that the decrement slope is much steeper for the proposed
solution.

Fig. 2 shows the KL-div. vs. ∆ PSNR graphs for different
images labelled as 656, 121 and 790, respectively. It is possi-
ble to notice that the proposed solution outperforms the algo-
rithm dith in most of the cases. It is also possible to notice
that in some cases (e.g., the image of Fig. 1a) the algorithm
dith decreases the KL-divergence down to a given limit.
No additional distortion on the coefficients can make the KL-
divergence closer to that of a single compressed image. On
the other hand, the proposed solution can always obtain a KL-
divergence lower than that of a single compressed image (and
therefore, within the acceptance region of the forensic ana-
lyst).

Further experiments were run considering different quan-
tization steps. Fig. 2c and 2d report the KL-div. vs. ∆ PSNR
curves obtained on the image 790 for ∆1 = 9,∆2 = 7 and
∆1 = 9,∆2 = 11. It is possible to notice that the effec-
tiveness of the antif algorithm is more evident at higher
distortions.

In the end, we report the double compression detection
probability vs. MSE and ∆SSIM for both algorithms ob-
tained classifying the doctored image with the classifier in
[4]. 100 randomly-selected images from [12] database were
coded with ∆2 = 7 and ∆1 ∈ [∆2−5,∆2 + 5] (uniform ran-
dom variable). These results show that the evidence found for
KL-divergence correspond to that obtained for a real detector.
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Fig. 2. KL divergence vs. ∆PSNR for different images and
quantization steps. Results refer to ∆1 = 7 and ∆2 = 9 for
image 656 (a) and image 121 (b); ∆1 = 9 and ∆2 = 7 (c)
and ∆1 = 9 and ∆2 = 11 (d) for image 790.
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Fig. 3. Double compression detection probability vs. MSE (a)
and ∆SSIM (b) for antif and dith approaches on UCID
database.

6. CONCLUSIONS

The paper presented an antiforensic strategy targeting foren-
sic methods based on Benford’s law. The proposed approach
alters the statistics of the first digit by changing the values
of the processed data minimizing a distortion function. Ex-
perimental results show that the proposed solution permits
modulating the introduced distortion and the probability of
fooling the forensic detector while requiring a lower amount
of distortion. Moreover, the proposed approach is quite gen-
eral and can be applied to a generic forensic detector based on
Benford’s law (not only for images).
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