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ABSTRACT

There has been a recent interest in counterforensics as an adversarial
approach to forensic detectors. Most of the existing counterforensics
strategies, although successful, are based on heuristic criteria, and
their optimality is not proven. In this paper the optimal modification
strategy of a content in order to fool a histogram-based forensics
detector is derived. The proposed attack relies on the assumption
of a convex cost function; special attention is paid to the Euclidean
norm, obtaining the optimal attack in the MSE sense. In order to
prove the usefulness of the proposed strategy, we employ it to suc-
cessfully attack a well-known algorithm for detecting double JPEG
compression.

Index Terms— Histogram-based forensics, multimedia foren-
sics, optimal counterforensics strategy, transportation theory.

1. INTRODUCTION

In the last decades, due to both technological and sociocultural evo-
lution, multimedia contents have become precious assets with im-
plicit and explicit value that creators and owners want to preserve.
Parallel to the spread and importance of multimedia contents, the
number and power of editing tools that are available even to non-
skilled users have also increased, thus compromising the trustability
of digital assets to the extent that their use as legal evidence is being
put into question.

Passive multimedia forensics has quickly evolved in the last
years to face the challenging problem of assessing the processing,
coding and editing steps a content has gone through. A lesson
already learned in watermarking and steganography research, the
emergence of forensics has naturally led to an arms race between the
forensic detector designers and adversaries. In fact, this race epito-
mizes the current trend of Adversarial Signal Processing [1] which
considers the existence of a smart adversary in the design of binary
decision functions. In the case of multimedia forensics, examples
of this race are sprouting in the literature. We review some relevant
instances next, noticing that the list is by no means exhaustive.

Popescu and Farid [2] presented in their seminal work not just a
well-known resampling detection technique, but also counterforen-
sic attacks aiming at resampling detectors. The case of JPEG com-
pression detection is probably one of the forensic problems that has
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been paid a larger attention due to its practical implications [3, 4, 5].
This has quickly given rise to counterforensic schemes such as those
proposed in [6, 7], or also in [8], accepted in this conference, and
where the JPEG quantization detectors proposed in [3, 7, 9] are at-
tacked by following a variational approach that minimizes a distor-
tion function by using a projected subgradient method. Unsurpris-
ingly, counter counter-forensics have been also suggested, clearly
reflecting the existence of a (so far, iterative) game between forensic
system designers and adversaries [9].

Lukas and Fridrich [10], and then Pevny and Fridrich [11] have
proposed double JPEG compression detection algorithms; the latter,
to which will devote special attention in this work, was initially de-
signed for steganography, although it is recognized as a milestone
also in forensics. Later, several other double JPEG compression de-
tection schemes have been presented, including [12, 13, 14]. Re-
cently, counterforensic double JPEG attacks have been also pro-
posed, such as the one due to Sutthiwan and Shi [15].

Another problem where this game was played is the Fixed Pat-
tern Noise (FPN) [16] and Photo Response Non-Uniformity Noise
(PRNU) [17] detection, where not just counterforensics [18], but
counter-counterforensics have been also put forward [19].

Although these counterforensic strategies are generally success-
ful, a common characteristic of most of them is that they are subopti-
mal, implying that their optimality is not proven (or even discussed)
under any meaningful criterion. An additional drawback of most
of them, is that they are aimed at specific forensics problems, and
their extension to broader scenarios is not straightforward. A re-
markable exception is the recent work by Barni et al. [20], where a
general methodology is proposed, which is shown to be able to cope
with two different problems, specifically, gamma-correction and his-
togram stretching.

Leveraging on [20], the objective of this work is to propose a
general (non-targeted) attacking method, with the distinctive feature
of a single target function whose optimization is consistently pur-
sued in the different steps of the attack design. Specifically, we will
focus our attention on the so-called histogram-based forensic detec-
tors, that take their decisions just based on the histogram of a (gen-
erally, transform-based) function of the input samples.

The remaining of this paper is organized as follows: Sect. 2
presents the main result in this work, deriving the optimal strategy
(in terms of distortion) that a smart attacker should seek. This strat-
egy is put into practice in Sect. 3, where the double-JPEG compres-
sion detector in [11] is optimally attacked. Finally, conclusions and
future work are presented in Sect. 4.
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2. MAIN RESULT

In this section we derive the optimal attacking strategy under certain
distortion conditions.

2.1. Problem formulation

Let x be a vector containing the samples of a discrete signal in its
original space; x is assumed to belong to a finite set X ⊂ R

N . We
assume that x can be transformed through a function f(·), yielding
y = f(x), which belongs to a set Y verifying Y ⊂ R

N . Further-
more, we will assume f(·) to be a bijection. The identity function,
the full-frame DFT and the block-DCT transform are examples of
this transformation.

A basic element in every forensics system is the forensic detector
φx : X 7→ {0, 1}, that decides between two alternative hypotheses
H0 and H1. For instance, H1 can be “x is doubly-compressed” and
H0 “x is not doubly-compressed”. In those detectors working in the
transform domain, φx is defined in terms of φy : Y 7→ {0, 1}, so
φx(x) = φy(f(x)). Given φx, the acceptance and rejection regions
are defined in the original space as

Rx
k

.
= {x ∈ X : φx(x) = k}, k = 0, 1,

with a similar definition for Ry
k , k = 0, 1.

We are interested in solving the following optimization problem:
Problem: Given x ∈ Rx

1 and a function gx : X × X 7→ R, solve

x
∗ = arg min

x′∈Rx
0

g
x(x,x′).

A typical choice for g is the squared Euclidean distance, i.e.,
gx(x,x′) = ||x−x

′||2, although perceptual measures like the Struc-
tural Similarity Index (SSIM) [21] are possible.

Based on the bijective nature of f , the previous problem defini-
tion is equivalent to

y
∗ = arg min

y′∈R
y
0

g
x(f−1(y), f−1(y′)),

where y∗ = f(x∗).
For the sake of simplicity, we will limit our discussion to the

case where there exists a function gy : Y × Y 7→ R such that
gx(f−1(y), f−1(y′)) = gy(y,y′). For instance, this is met when f

is an orthonormal transform and gx and gy are Euclidean distances.
Under this assumption, we can alternatively work in the transform
domain, i.e.,

y
∗ = arg min

y′∈R
y
0

g
y(y,y′). (1)

In this paper we are mainly interested on histogram-based de-
tectors. We will use the cumulative histogram of y, which is defined
in terms of the boundary points between histogram bins. Specifi-
cally, if the histogram bins are delimited by the set of points B =
{b0, b1, . . . , bn1

}, where b0 < b1 < . . . < bn1
, b0 = −∞, bn1

=
∞, we define the cumulative histogram of y in terms of B as

H(bi,y) =
1

N

N
∑

j=1

1(yj ≤ bi), i = 1, . . . , n1,

where 1(·) is 1 if its boolean argument is true, and 0 otherwise. The
definition guarantees that 0 ≤ H(bi,y) ≤ 1. For the sake of sim-
plicity, we define H(B,y)

.
= [H(b1,y), H(b2,y), . . . , H(bn−1,y)],

while the set containing all the valid H(B,y) will be denoted by H.

The inverse mapping of H(bi,y) is denoted by H−1(p,y), and
is defined as

H
−1(p,y)

.
= arg min

bi,1≤i≤n1 :H(bi,y)≥p
bi.

Definition: For a given set of histogram bin boundary points B, the
test statistic φy is histogram-based if there exists a function φH :
H 7→ {0, 1} such that φy(y) = φH(H(B,y)) for all y ∈ Y .

Therefore, given B, for a histogram-based test we can define the
equivalent acceptance and rejection sets as

RH
k

.
= {H(B,y) : φH(H(B,y)) = k}, k = 0, 1.

We introduce gH : H × H 7→ R to quantify the similarity be-
tween histograms:

g
H(H(B,y),H(B,y′))

.
= min

y′′:H(B,y′′)=H(B,y′)
g
y(y,y′′). (2)

We can state now the main result in this paper
Lemma: The solution to (1) is equivalent to

H
♯(B,y♯) = arg min

H′(B,y′)∈RH
0

g
H(H(B,y),H ′(B,y′)),

(3)

y
∗ = arg min

y′:H(B,y′)=H♯(B,y♯)
g
y(y,y′). (4)

The procedure comprised by the three optimization steps in
Eqs. (2-4), can be justified in terms of optimal transportation theory
[22]. It is also reminiscent of the strategy recently proposed for
the counterforensics problem by Barni et al. [20], which will be
discussed in detail in Sect. 2.4. At this point we remark that our
work differs from [20] in the strategy of constructing both gy and
gH directly from gx in order to find the attack that optimizes the
target in the original domain.

2.2. A relevant particular case

For the case where gy is component-wise additive and depen-
dent on the difference between the input vectors, i.e., gy(y,y′) =
∑N

i=1 g
yi(yi − y′

i), each gyi is convex, and B = Y , we can write

yi = H
−1(H(yi,y),y),

and it can be shown that

gH(H(B,y),H(B,y′)) =
∑N

j=1 g
[

H−1
(

j
N
,y

)

−H−1
(

j
N
,y′

)]

. (5)

This result can be seen as the discrete counterpart of optimal
transportation on the real line [22], where instead of the distribu-
tion function we use the cumulative histogram. In fact, (5) also pro-
vides directions on how to modify y into a signal with histogram
H♯(B, y♯), i.e., to solve (4). Specifically, if we denote by π an or-
dering permutation of y, i.e., yπ0

≤ yπ1
≤ . . . yπN , and by τ a

similarly defined ordering of y♯, then the optimal modification algo-
rithm is nothing but

y
∗
πi

= y
♯
τi
, i = 1, . . . , N. (6)

Note that ties in the ordering of y and y♯ can be arbitrarily reordered
without affecting the value of the target function. Then, for the par-
ticular case in this section, the original problem involving the three
optimizations in (2), (3), and (4), only requires one numerical opti-
mization, i.e. (3).
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2.3. Example

Next, we illustrate how the general approach outlined in the previous
sections can be applied to a well-known practical scenario. We focus
now on the case of JPEG-compressed images, with DCT histogram-
based detection and PSNR as distortion measure. In such framework
x would be the pixels, y their block-DCT transformed coefficients,
and gx and gy the Euclidean norm.

The result given in the last section indicates that in order to move
an image x ∈ Rx

1 to Rx
0 with a minimum MSE (or equivalently,

maximum PSNR), one should seek the histogram H♯(B,y♯) defined
according to (3), which in this case is simply

gH(H(B,y),H(B,y′)) =
∑N

j=1

[

H−1
(

j
N
,y

)

−H−1
(

j
N
,y′

)]2
.

Once y♯ is found, the optimal modification in the block-DCT coeffi-
cient domain of the original image y is implemented as (6). Again,
it is important to note that just one numerical optimization, the com-
putation of H♯(B,y♯), is involved in this approach.

Even though it could be argued that the PSNR used in this sec-
tion lacks perceptual significance, it is important to emphasize that
due to the form of the solution in (6), the attack will not focus on
specific regions of the image, but will be evenly spread over all the
involved DCT coefficients. In fact, the degrees of freedom granted
by the ties in (6), which do not affect the PSNR, can also be exploited
to reduce the perceptual distortion while keeping the PSNR. In any
case, we note that other distortion measures as the SSIM do fit in the
general framework provided in Sect. 2.1, which means that they can
be addressed by resorting to the three-stage optimization given by
Eqs. (2-4).

2.4. Comparison with previous art

A result quite similar to the particular case discussed in the last sec-
tion was reported by Eggers et al. in [23], where it was applied to
the minimum Euclidean distortion histogram mapping problem in
steganography.

In the forensics field, Barni et al. has very recently proposed in
[20] a counterforensics technique which is similar to our approach.
However, in Barni et al.’s work different target functions are used in
the three solution stages (specifically, chi-square, information diver-
gence and SSIM), instead of a unique target throughout the entire
procedure, as it occurs in our case. We remark that both gy and gH

directly derive from gx. This allows us, for instance, to determine
the value of the manipulation distortion in the original domain as a
simple function of the original and the target distorted histograms.

Therefore, the 3-step optimization in [20] is reduced here to a
one-step optimization (the equivalent to histogram retrieval in Barni
et al.’s work, i.e., the determination of H♯(B,y♯)). Once such cumu-
lative histogram is obtained, we give a closed, as opposed to iterative
or numerical, procedure to compute the signal in the original domain
that produces the required histogram with minimal distortion. In this
way, the iterative procedures used in [20] are avoided, with a conse-
quent reduction of the computational cost.

Another significant difference with [20] is that no specific foren-
sic detector is used therein; instead the smart attacker tries to find the
mapping strategy that minimizes the Kullback-Leibler divergence
(KLD) between the histograms of the modified and original signals;
the rationale behind this strategy is that the KLD measures the dis-
tinguishability between distributions. However, when the attacker is
aware of the particular detector being used (a reasonable assumption

from Kerckhoff’s principle), then it is possible to devise an optimal
attack that takes advantage of such knowledge, as we will illustrate
in the next Section.

3. EXPERIMENTAL RESULTS

In order to show the validity of our strategy, we focus on the frame-
work described in Sect. 2.3. The used forensic detector is the double-
JPEG compression detector proposed in [11], and the considered
database is UCIDv2 [24]. Following Kerckhoff’s principle, we as-
sume that the detector is perfectly known by the adversary.

The scheme proposed in [11] considers 9 8×8-block DCT coef-
ficients, and computes for each of them its 16-bin histogram, where
each bin is centered at the integer multipliers of the quantization step.
These histograms are fed to a SVM with Gaussian kernel. To train
and test the Support Vector Machine (SVM) used in [11], and de-
termine the SVM parameters C and γ, 380 images were randomly
chosen for the training and 380 for testing. Each of those images
was doubly JPEG-compressed, with Quality Factor (QF) of the first
compression all the values in {0, 10, 20, . . . , 100}, while the second
quality factor was fixed to 70, i.e., the SVM was trained for a spe-
cific QF, as proposed in [11]. Additionally, all the images were also
compressed just once with QF= 70, in order to provide the second
training class to the SVM; consequently, the two classes fed to the
SVM for training (and similarly those used for testing) had 4180 and
380 images, respectively.

Parameters C and γ were chosen following the strategy pro-
posed in [11]; namely, they were sampled in a logarithmic domain,
and then exhaustive search was performed. The criterion used for
selecting the values was the maximization of the well-known Area
Under Curve, which resulted in C = 23 and γ = 2−5. Once the
SVM has been fixed, we had to decide the detection threshold the
SVM soft output will be compared to; in this case we tried to obtain
approximately the same value for both probabilities of error (i.e.,
false negative, Pfn, and false positive, Pfp, that is, the probabili-
ties of respectively deciding that the image was compressed once,
when it was actually compressed twice, and viceversa), obtaining
Pfn = 0.1557 and Pfp = 0.1478 for a threshold equal to −0.1574.
Furthermore, due to the possible rounding effects in the histogram
probabilities related to the use of a finite number of DCT coeffi-
cients, a tolerance of 0.02 was added, so the optimization process
considered a conservative value for the threshold of −0.1774.

In order to test the performance of the proposed attacking strat-
egy, a challenging situation was chosen: the attacker would try to
modify doubly JPEG-compressed images with a first QF as small
as 10, and a second QF= 70, while fooling the detector to decide
that the resulting image was only once compressed. This should
be achieved maximizing the PSNR between the original doubly-
compressed and the attacked versions of each image.

To avoid the possible bias in the results due to reusing images
from the training and test sets, we decided to use a fresh set of 380
images in the performance evaluation. One of those images was
JPEG-compressed only once with QF= 70, while the others were
compressed twice: first with QF= 10 and then with QF= 70. The
once-compressed image was used to move the input image to the
boundary of the detection region, and then start an optimization al-
gorithm.

The PSNR achieved by averaging the MSE is 35.78 dB, while
the minimum PSNR for a single image is 30.93 dB, and the max-
imum 40.21 dB. It is important to note that the SVM soft outputs
actually lie around the desired value (i.e., −0.1774), with empirical
mean −0.1741 and variance 1.1 ·10−4 . This variability is due to the
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Fig. 1. Histogram of an original image and its optimally attacked
version.

use of real-valued (instead of discrete-valued) optimization, which
causes the probabilities assigned by the optimization algorithm not
to be achievable in practice. In fact, 20 out of the 379 images
would be still detected as doubly compressed. However, this prob-
lem would be easily solved by considering a larger tolerance value,
or introducing a postprocessing stage where these rounding effects
could be smoothed. We have implemented the second strategy, by
slightly modifying the target histogram for those images where the
double compression is still detected. Specifically, instead of mod-
ifying the original histogram by the difference with respect to the
target one, the applied modification is a scaled version of that differ-
ence; if a scaling factor of just 1.01 is applied, then all the images
are classified as singly compressed. All the PSNRs computed from
the average MSE, the maximum PSNR and the minimum one keep
the values presented above for the given precision (i.e., ±0.01 dB).

For the sake of illustration, Fig. 1 shows the histogram of an
original signal and its attacked counterpart. It is worth to point out
that the proposed scheme tries to fill the gaps left by the first quanti-
zation. Nevertheless, contrarily to typical noise-addition strategies,
in this case the noise is optimally designed to fool the detector and
simultaneously achieve the maximum PSNR with respect to the orig-
inal.

As a comparison, we have tested the attack proposed in [15],
which is specifically designed for fooling doubly-JPEG compres-
sion detectors, in the same experimental framework. As described
in [15], we used the bilinear interpolation, although the shrink-zoom
parameter was reduced to 0.5 in order to increase the effect of the
attack. The PSNR obtained by averaging the MSE is 26.51 dB, that
is, more than 9 dB worse than ours, although only 50.4% of the im-
ages have been classified as non-doubly compressed (94.7% in our
case).

4. CONCLUSIONS AND FUTURE WORK

We have proposed an optimal counterforensic strategy for histogram-
based detectors; this strategy considers a fixed distortion which is
consistently used throughout the derivation of the method. Inter-
estingly, for some transform and distortion functions of practical
value, the proposed method reduces to a single optimization, with a
significant reduction in computational cost.

We remark that the (minimum) attacking distortion obtained in
this way could be used as a measure of the robustness of a given
forensic scheme against smart adversaries. This would complement

the usual robustness measures, as the ROC, that do not consider the
possibility of smart adversaries.

Among the future lines, we plan to use our methodology to at-
tack other histogram-based detectors. Furthermore, as the PSNR is
known to be an inadequate distortion measure in perceptual terms,
we will address the use of other measures as the SSIM. In this sense,
as the SSIM is non-convex, it would be worth deriving a convex
proxy that could speed-up the optimization here proposed.
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