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ABSTRACT

Nowadays, considering the availability of relatively cheap devices

and powerful editing software, video tampering is a relatively easy

task. Video sequences can be tampered with by performing, e.g.,

temporal splicing. However, if the sequences spliced together do not

share the same frame rate, they have to be temporally interpolated

beforehand. This operation is often made using motion compen-

sated interpolators, which allow to minimize visual artifacts. In this

paper we propose a detector of this kind of interpolation. Moreover,

the detector is capable of identifying the interpolation factor used,

allowing an analyst to uncover the original frame rate of a sequence.

This method relies on the analysis of the correlation introduced by

the filter adopted by the interpolator. Results show that detection is

successful, provided that the number of observed interpolated frames

is large enough. Moreover, tests on compressed sequences obtained

from television broadcasts validate the method in a real world sce-

nario.

Index Terms— video forensics, interpolation, motion compen-

sation, motion vectors

1. INTRODUCTION

Thanks to the increasing availability of multimedia sharing plat-

forms and user-friendly editing software, it is now easy to collect

video sequences and tamper with them. A typical scenario consists

in splicing together different sequences in order to make a compila-

tion video. Another common situation is that of taking some objects

from a sequence (e.g., some people) and pasting them into another

one (e.g., depicting the desired background).

In the literature, many ways to identify such situations have been

studied for still images [1, 2, 3, 4]. However, more recently, video

forensics is becoming a field of major interest [5]. In the simplest

case, image-based techniques are applied on a frame-by-frame ba-

sis [6]. More interestingly, the temporal dimension of the video

sequences can be exploited by techniques specifically tailored to

videos [7, 8].

When several original sequences are used to create a tampered

sequence, it is often the case that they were originally acquired at

different frame rates. This can be due either to the use of different

acquisition devices or to settings used during video capturing. When

different sequences of this kind are spliced together in order to create

a realistic tampering, the frame rate of the whole sequence must be
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unified. This means that sequences with different frame rates must

be temporally interpolated to obtain the desired frame rate.

Simple methods to achieve this goal involve frame repetition or

frame averaging in time. However, such techniques result in visual

artifacts (e.g., ghosting), especially in sequences with high motion.

A common method to interpolate frames, while minimizing temporal

artifacts, is to use motion-compensated interpolation. This technique

consists in performing motion estimation before interpolating neigh-

boring frames, so that new frames are obtained by filtering along the

motion trajectories identified by motion vectors. Indeed, this method

takes explicitly into account the temporal correlation between neigh-

boring frames. However, performing such a filtering leaves charac-

teristic footprints on the sequence itself. These footprints can then

be exploited in order to reveal the use of interpolation.

In this work we focus on extracting these footprints from videos,

leveraging the principle successfully adopted in the case of image

(spatial) resampling. The goal is to design a detector capable of re-

vealing the use of frame interpolation on a set of consecutive frames

in a sequence, even when motion-compensation is applied before

filtering. Moreover, when interpolation is detected, we estimate the

interpolation factor used, thus inferring the original frame rate of a

sequence. This detector can be used on a video sequence (or part of

it) to verify if its frame rate has been changed along time. Changes

in frame rate can then be used as evidence of video tampering.

The rest of the paper is organized as follows. In Section 2 we

introduce the video interpolation problem and the used notation. In

Section 3 we describe the proposed detector. In Section 4 we show

the results obtained on a dataset composed by well known test se-

quences, which are interpolated adopting different algorithms. In

addition, we also experimented with television broadcasts. Finally,

in Section 5, we draw some conclusions and present the possible

future works.

2. VIDEO INTERPOLATION

Let us consider an original video sequence X, whose frames are

denoted as X(t), t = 1, 2, ..., T . Let us now consider the case in

which the frame rate of this sequence is changed, scaling the original

rate by a factor ω. The resulting interpolated sequence is then X
ω ,

and its frames are denoted as Xω(ωt). If ω < 1 the sequence is

upsampled, and new frames are created at non integer values ωt. If

ω > 1 the sequence is downsampled, which is typically achieved by

upsampling the sequence (if needed) and dropping a given number

of frames. The interpolated sequence is composed by some frames

belonging to the original one, and, possibly, some frames obtained

interpolating the original ones. In the case of downsampling for ω =
n, n ∈ N, the output sequence can be simply obtained by means of
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Fig. 1: Trajectory of interpolated pixels across frames when motion

compensation is performed (continuous arrow) and when it is not

(dashed arrow).

frame dropping.

Let us now consider the upsampling operation. In the simplest

case, frames Xω at non-integer positions ωt can be computed by

interpolating 2K neighboring frames pixel-wise as

Xω
ij(ωt) =

K
∑

k=−K

hk ·X0

ij(ωt+ ωk),

where h is the interpolation filter (i.e., a 1-dimensional low-pass fil-

ter), i and j denote the spatial pixel position in a frame, and X
0 is

the original sequence defined on the support of the interpolated one,

such that

X0(ωt) =

{

X(ωt) if ωt is an integer

0 otherwise

However, in a more realistic scenario, interpolation among

frames is not obtained applying such a simple procedure, but motion

is taken into account to avoid annoying temporal artifacts due to

moving objects (e.g., ghosting). In order to obtain frames Xω at

non-integer positions ωt, neighboring frames X(t± i), i = 1, ..., I ,

are motion-compensated before being interpolated. Figure 1 shows

an example of motion compensated interpolation: when ω = 0.5
dashed frames are the interpolated ones. If motion compensation is

performed before interpolation, the pixels filtered to obtain the inter-

polated ones lie on the trajectory followed by the block and depicted

by the solid arrow. On the other hand, if no motion-compensation is

performed, the filtered pixels are those along the dashed arrow (all

in the same spatial position for each time instant). When motion

compensation is performed, the resulting sequence is

Xω
ij(ωt) =

K
∑

k=−K

hk ·X0

mt,i,jnt,i,j
(ωt+ ωk),

where now the spatial indexes mt,i,j and nt,i,j change in each frame

for each pixel position (i, j), in order to follow motion estimated

trajectories in time.

3. DETECTOR

When a signal is interpolated as described above, the filter intro-

duces a strong correlation between the samples [9, 10]. In the video

case, pixels in the same spatial position (or on the same motion tra-

jectory when motion compensation is considered) but different time

instants are correlated. As shown in [11], if we compute an estima-

tion of each sample from its neighbors, we end up with two cases. If

the sample we estimated was actually computed from its neighbors,

they will be similar. If the sample we estimated was an original one

in the sequence, the sample and its estimation will be quite different.

Computing the error between our estimation and the interpolated se-

quence results then in a periodic signal.

As shown in [11], by using a predefined analysis filter h∗, one

may compute the prediction error, which adapted to video is given

by

eij(ωt) = Xω
ij(ωt)− X̂ω

ij(ωt)

= Xω
ij(ωt)−

K
∑

k=−K

h∗

k ·Xω
ij(ωt+ ωk), h∗

0 = 0.
(1)

It is possible to prove that the variance of this prediction error is pe-

riodic [12, 13, 14], and its periodicity depends only on the interpo-

lation factor ω, and not on the analysis filter h∗. By exploiting this

property, the interpolation factor can be directly inferred by look-

ing at the error periodicity. Figure 2 shows the comparison between

the error for an original and an interpolated sequence (top), and the

Fourier transform of the errors (bottom). It is clear that the inter-

polated sequence shows a periodic artifact, easily detectable in the

Fourier domain.

If we consider motion compensation, Equation 1 might lead to

poor results, since it analyzes pixels along the wrong interpolation

trajectories. In order to correct this behavior, we should estimate the

interpolation trajectories beforehand. This can be done by perform-

ing motion estimation on the interpolated sequence. Even if the es-

timated motion vectors (MVs) do not coincide with those computed

on the original sequence, they are likely to be very similar. In this

way, an estimate of mt,i,j and nt,i,j for each frame can be obtained.

The detector we propose can be then summarized in the follow-

ing steps:

• Compute m̂t,i,j and n̂t,i,j from MVs estimated by perform-

ing motion estimation between adjacent frames.

• Compute the prediction error as

eij(ωt) = Xω
ij(ωt)−

K
∑

k=−K

h∗

k ·Xω
m̂t,i,j n̂t,i,j

(ωt+ ωk),

using the filter h∗ whose only coefficients different from zero

are h∗
±1 = 0.5.

• Compute the squared error for each frame as

e(ωt) =
∑

ij

|eij(ωt)|
2.

• Estimate the periodicity of e(ωt) in the frequency domain by

searching for peaks in |E(f)| = |F(e(ωt))|, where F indi-

cates the Fourier transform (see Fig. 2).

Once this periodicity is estimated, it can be directly related to an

interpolation factor ω using the equation

∆f = 0.5− |ω − 0.5|,

where ∆f is the position of the first peak in the normalized fre-

quency domain (i.e., the inverse of the period of the error) [11]. This

allows an analyst to assess if the sequence has been interpolated and

estimate the original frame rate.

However, as noticed in [11], this method might not uniquely

identify the used interpolation factor. In particular, when downsam-

pling, or upsampling by a factor less than 1/2 are applied, the de-

tector is subject to aliasing. Indeed, periodic artifacts for sequences

resampled with these ω values are coincident with those of other up-

sampled ones. This fact prevents the detector to estimate the correct

interpolation factor in this situation.
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Fig. 2: Comparison of prediction error for the original and an inter-

polated version (with ω = 1/3 from 30 to 90 frames per second) of

the sequence Foreman: e(ωt) for the original (blue) and interpolated

(red) sequences (top); |E(f)| for the original (blue) and interpolated

(red) sequences (bottom).

Table 1: Relationship between frame rate (in frames per second -

FPS) and resampling factor ω when the original sequence is acquired

at 30 FPS.

FPS 7.5 10 15 25 36 45 60 90 120 150

ω 4 3 2 6/5 5/6 2/3 1/2 1/3 1/4 1/5

4. EXPERIMENTAL RESULTS

The proposed detector was tested on three sequences (namely, Fore-

man, Hall, and Mobile at CIF spatial resolution) of 300 frames each.

All these sequences are uncompressed and their original frame rate

is equal to 30 Frames Per Second (FPS). Four different motion-

compensated interpolators were tested (ISTWZCodec [15], Medi-

anet [16], and the two freeware tools, namely MSU and MVTools2).

Every sequence was temporally resampled using the factors in Ta-

ble 1, which also reports the target frame-rate. Table 2 shows the

values of ω used for each interpolator, and the probability of cor-

rect identification averaged on all the sequences when all the frames

are used. The notation “1*” indicates that, instead of the correct re-

sampling factor, the aliased version was found. We do not report

results on non-interpolated sequences, since on the pool of 10 un-

compressed CIF sequences we tested, the detector always correctly

identified the sequences as non-interpolated.

Results for these sequences can be clustered in three classes:

i) ω ≤ 1/2; ii) 1/2 < ω < 2; iii) ω ≥ 2. For the first class

(upsampling withω ≤ 1/2) the resampling factor is always correctly

estimated. For the second class, when the sequence is upsampled or

downsampled with ω up to 6/5, the estimated ω is always confused

with the aliased version, as expected. For downsampling with integer

ω ≥ 2 the detector does not work. However this is an expected

behavior. When the sequence is downsampled by an integer factor,

no interpolation is performed, but the only operation performed is

frame dropping. This means that no filtering operation is involved,

thus the detector fails.

It is interesting to analyze how the detection accuracy varies

when changing the number of available frames. Figure 3 shows this

analysis averaged on all the sequences and detectors when we do

not disambiguate between aliased interpolation factors. Results are

Table 2: ω identification probability for different interpolators at

different FPS. “1*” indicates that ω is aliased, while “-” means that

the given interpolation factor could not be used or was not tested

with the selected interpolator.

FPS 7.5 10 15 25 36 45 60 90 120 150

ISTWZCodec - - - - - - 1 1 1 -

MSU - - - - - - 1 1 1 -

Medianet 0 0 0 1* 1* 1* 1 1 1 1

MVTools2 0 0 0 1* 1* 1* 1 1 1 -
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Fig. 3: Precision for different temporal window size (number of

frames).

averaged on all the tested sequences, and show that the correct re-

sampling factor can be identified even if only a subset of frames is

analyzed. As an example, for sequences interpolated with ω = 1/2
(from 30 to 60 FPS), by analyzing only 56 consecutive frames (i.e.,

less than 1 second) the detector correctly identifies the resampling

factor with probability 1. Moreover, this result does not depend on

the portion of the sequence that is analyzed (e.g., beginning, cen-

tral part, end). This allows an analyst to apply the detector locally

on a long sequence, in order to identify possible FPS changes, as it

happens if several video sequences are spliced together.

Another aspect that has been investigated is the performance of

the detector using a smaller amount of pixels for each frame. Indeed,

a possible attack consists in pasting an object from a video into an-

other sequence with different FPS. In this situation, in order to detect

the forgery, the detector should work on small spatial windows for

each frame. For this purpose we tested the detector on Foreman

using a square spatial window ranging from 2 × 2 to 288 × 288
pixels. Figure 4 shows the accuracy on interpolation detection when

different interpolation factors are used, averaged on all the interpo-

lators. We notice that for some interpolation factors, especially for

the upsampling case, the detector seems to be very robust to spatial

cropping. As an example, when the sequence is interpolated from 30

to 60 FPS, almost any size of the window can be used. At 90 FPS

results are more accurate with a window of 200 × 200 pixels than

with the maximum window size. However, this result is compatible

with the detector. Indeed, if a big window covers an area such as

a flat background where the effect of interpolation might be hardly

perceptible, the detector could lead to a wrong result. On the other

hand, using a smaller window, these flat areas can be discarded, and

the analysis leads to the correct result.

In order to validate the detector in a real world scenario, an
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Fig. 4: Precision for different spatial window size (in pixels).
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Fig. 5: Binary array for interpolation detector for H.264 (top) and

MPEG-2 (bottom) sequences. The red dashed line shows the change

point from interpolated to non-interpolated (or vice versa according

to the analyzed sequence). The value 1 or 0 indicates that the algo-

rithm has detected interpolation or not.

analysis on temporal windows has been applied to two sequences

from television broadcasts. One was obtained directly from a DVB-

T stream (encoded with MPEG-2), and the other from an online

stream (encoded with MPEG-4 part10 H.264/AVC). Both sequences

show sport events, and contain a part that is not interpolated (part

of the match), and a part that is interpolated (part of a replay). The

ground truth for the interpolation factor was extracted by compar-

ing the length of the interpolated scene with the original one (found

analyzing the overall stream). Figure 5 shows a binary array whose

values are 0 or 1 according to frames being identified as interpolated

or not. The value 1 means that the correct interpolation factor has

been identified for the window centered at that frame. The value

0 is associated to frames not belonging to the interpolated part of

the sequence. We notice that in the first sequence (top) the detector

perfectly identifies which part of the sequence has been interpolated

with the correct interpolation factor. In the second sequence (bot-

tom), some interpolated frames are classified as non-interpolated.

However it is still possible to discriminate which is the original part

of the sequence. The decreased accuracy on the second sequence is

probably due to the fact that the used MPEG-2 compression is more

aggressive than H.264/AVC, which is used for the other sequence.

This hides some interpolation footprints.

5. CONCLUSIONS

In this paper we presented a method to assess if a video sequence

has been temporally interpolated, allowing also to estimate the orig-

inal frame-rate. This detector is based on solutions adopted to de-

tect spatial resampling in the case of still images. However it has

been adapted to video, exploiting the temporal correlation between

frames and allowing it to be used when motion compensation is ap-

plied before interpolation. The method achieves promising results,

even when it is used on a subset of the frames. Moreover, it proves

to be valid even on small spatial windows, which allows the detec-

tor to be used as a possible tool for copy and paste forgery attacks.

Results on slightly compressed sequences from television broadcasts

validate the detector even on a real world scenario. However, some

open questions could still be answered. Indeed, an in depth analysis

on the effect of compression on the resampling detector is under re-

search. Moreover, possible anti-forensics methods could be studied

to disguise this detector, hiding the footprints left by resampling.
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