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ABSTRACT

The sensor pattern noise (SPN) can be regarded as the unique
identity of a digital camera which is highly useful in digital
image forensics [1, 2]. Existing methods [, 2] which works
by denoising each individual natural image often took an in-
vestigator a long time and great efforts to collect sufficient
photos of diversified enough natural scenes. These processes
are hard to repeat or standardized for officially using by an
authority. In this work, we create noise image data set by
taking photos of random noises displayed on a high defini-
tion monitor and propose a homomorphic based SPN extrac-
tion method. It offers the forensic researcher a fast way to
create a large image data set in a few minutes. And the ex-
traction method only needs to denoise once, which is highly
efficient to deal with large numbers of photos. We compared
the source camera identification performance of the proposed
SPN extraction method to a prior state-of-art with identical
experimental settings. The experimental results confirm the
effectiveness of the proposed method.

Index Terms— Digital Forensics, Sensor Pattern Noise,
Source Camera Identification, PRNU.

1. INTRODUCTION

The sensor pattern noise (SPN) can be regarded as the unique
identity of a digital camera which is highly useful in digital
image forensics[ |, 2]. It is caused by tiny flaws in the process
of semiconductor manufacturing of CCD/CMOS sensor chips
of digital cameras. Flaw position occurs randomly in each
sensor chip, and the introduced noise level is also certain[3].
Thus, there is certain correlation between SPN of two im-
ages photographed by the same camera, while the SPN of any
two cameras are totally independent. Common application of
SPN includes source camera identification[4, 1, 2, 5, 6], im-
age tampering detection[4, 1, 7, 2], and photographing year
estimation[8].

To obtain a “Good” SPN is crucial to the performance of
those forensic methods that involved it[4, 1, 2, 5, 6]. A more
precisely estimated SPN means the more accurate source
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camera identification[9, 10], smaller detectable local tamper-
ing area[4], and more resistant to anti-forensic operations[ | 1].
So forensic experts hope to approach ground-truth SPN at
any accuracy, and continuously pursue better SPN extraction
methods[12, 9]. In fact, the estimation of SPN, or equally
the sensor response non-uniformity calibration[ 3], is a long-
standing problem possibly as old as digital imaging itself.
The traditional solution is to use flat-fielding based camera
calibration experiments, e.g. using dark frames or standard
light boxes. However in the case of digital forensics, we need
to deal with images from common consumer digital cameras
whose output images are highly disturbed by the linear/non-
linear internal processing of the camera[l4], such as CFA
interpolation, tone mapping (gamma correction). Meanwhile,
the majority of low-end consumer digital cameras only sup-
port JPEG output image format. Conventional flat fielding
based camera calibration will encounter difficulty for the
subtitle SPN has been removed unrecoverably by the lossy
JPEG compression. Even with stock of such images, the
estimation accuracy of an SPN cannot be further improved.
All these factors make it more difficult than ever to reveal the
ground-truth SPN of a digital camera.

Consequently, digital forensic experts turned to use clut-
tered natural images to reveal SPN[ 15, 4, 16]. In this circum-
stance, the randomness of natural scenes can prevent the sub-
title SPN signal to be completely removed by JPEG compres-
sion and other harmful post-processings. Although the natural
scene also “contaminated” the observation of the SPN, from
a theoretically point of view, it is still possible to recover the
SPN as long as we have a sufficient number of these images.
Recently, researchers have proposed a multiple of these meth-
ods and their derived versions. For example, Lukas et.al[]]
proposed an additive SPN model and extraction method, Chen
et. al[2] proposed a multiplicative SPN model and a MLE
extraction method, and their improved versions [12, 9, 17].
What these methods share in common is that their image data
set is constituted by photos of natural scenes, and the SPN ex-
traction algorithms work by denoising each individual image.
This would be a labouring task when the forensic application
requires highly accurate SPN, which demands a large image
data set. Moreover, these processes are hard to repeat or stan-
dardized for officially using by an authority. So it is necessary
to study on how to extract SPN when image set is very large.
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This involves the calculation efficiency, estimation accuracy
of an SPN extraction algorithm. And also, we must find out
an effective way to collect large scale image data set in reality.

In this work, we propose a novel experimental method
to create large image data set by capturing noise images dis-
played on a high-definition monitor. It offers the forensic re-
searcher a fast way to create a large image data set. And this
process is easy to standardized and fully repeatable. Corre-
spondingly, a highly efficient homomorphic based SPN ex-
traction method is proposed to deal with large numbers of
photos. Further derivations show that it is a statistical optimal
solution for multiplicative SPN estimation. In the experiment
part, a comparative study is given on the proposed method
and a prior state-of-art. Experimental results confirm the su-
periority of our method.

2. PROPOSED METHOD

In this section, we propose a novel experimental method to
create large image data set efficiently, and then a computa-
tional efficient SPN extraction algorithm is proposed corre-
spondingly. Figure 1 gives the overview of the processing
pipeline of our method.

2.1. Create Large Image Data Set by Taking Photos of
Onscreen Noise Images

Existing SPN extraction methods are all based on natural
scene image data sets [18, 4]. In order to obtain a large
non-repetitive image data set, a photographer have to replace
his photographing scene randomly and constantly which is
a labouring and time-consuming task in practice. Moreover,
these steps can hardly be reproduced at elsewhere, thus var-
ious testing standards of SPN-based forensic method cannot
be unified. Therefore, new experiment methods need to be
developed for overcoming these barriers.

In this section, we propose a novel experimental method
to collect hundreds of images in a few minutes. The exper-
iment is carried out in a dark room with no interference of
other illuminations. We display one random noise image at
each time with a high resolution monitor, and use a digital
camera (to be tested) to take photos on such images. All ran-
dom noises should obey the same distribution with specified
mean and variance, e.g. a uniform distribution used here. The
position of the camera is fixed during the experiment using a
tripod. The camera viewfinding scope should not exceed the
screen border. The screen resolution is higher the better, so
as to guarantee the randomness of each pixel photographed.
While pressing camera shutter each time, a different random
noise image will be displayed. The above process is repeated
until the image number meets the SPN extraction accuracy
requirement.

The prominent advantage of this method is that it can
greatly accelerate the creation process of image data set, usu-

ally obtaining hundreds of noise image at about 10 minutes.
Moreover, the automation of this photographing process can
be achieved through designing camera control equipments or
software, so that researchers can get photos of any number,
thus the real value of SPN can be approached at high accuracy.
Forensic experts can repeat the results of the SPN extraction
experiment at any place through standardized experiment en-
vironment. This is conducive to unify the test parameter of
passive forensic method, for example, the results of source
identification or tampering detection will not differ due to the
geographical location of testing laboratory.

2.2. SPN Extraction Based on Homomorphic Filtering

Different assumptions to SPN had resulted in two types of
SPN extraction methods . One is based on the additive SPN
model or the so called “fixed pattern noise”[ ], while another
is based on the PRNU(Photo Response Non-uniformity) noise
which is a multiplicative SPN model[2]. But with the techni-
cal advancement of digital camera in recent years, the post-
processing process within the camera usually eliminates the
influence of additive SPN by adopting dark-frame removal
method. The so called “dark frame” means a noise image
captured in shutter closed status with the same camera con-
figurations right after photographing a natural scene image.
Through subtracting this frame, the influence of additive SPN
can be eliminated. Therefore, forensic research is inclined to
extract PRNU noise as sensor pattern noise. And the most fa-
mous forensic PRNU noise estimation algorithm is proposed
by Chen et. al[2].

In this section, we proposed a new PRNU noise extrac-
tion algorithm based on homomorphic filtering. Compared
with the method in [2], it is simpler, faster, and with justifi-
able optimality. It consists of three steps: 1) all natural images
are superposed together to get one average image; 2) the log-
arithm on each pixel of average image; 3) extract PRNU by
denoising algorithm. The advantage of this algorithm is that
it only needs to denoise one image, while the algorithm in the
past needs to carry out denoising for each image (/V times).
Meanwhile, it can be proved that when K is a white Gaussian
noise(WGN), Wiener filter is a near-optimal solution when
the image number N tends to infinite. The derivation is as
follows:

We take the same image model used in [ | 8] which is pro-
posed by Healey et. al[13]. Then a color value of camera
captured image is described as:

I(x,y) = g"[(1 + K(z,9))Y (2, y) + On(z,y)]"+O4(z,y) (1)

This model considered the main processing procedures within
a digital camera, including white balancing, tone mapping,
additive and multiplicative sensor noise , and JPEG compres-
sion noise. g is the color channel gain factor caused by white
balancing, its value is different with each photo according
to the scene. Non-linear tone mapping is approximated by
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Fig. 1: Process of creating large image data set from random noise images.

Gamma transformation, with v as Gamma correction factor.
K is the PRNU noise to be extracted as SPN[2] . O, is the
JPEG quantization noise. ©,, is other additive random noise,
such as shut noise, dark current, and read out noise. The range
scope of both I(x,y) and Y (z,y) are [0, 1]. For concise pur-
pose, (z,y) will be omitted in the following formulas, and
I(x,y) shall be expressed by I. Other 2-D signals shall be
done in the same manner.
By overlaying all images in image set, we have

1 N 1 N N
= = v g 17 )
~ ;1 ~ {;g [(1+ K)Y; + 6,.] +;@q,z} )

Carry out Taylor expansion to Eq. (2),

N N
Zf = —[Z Y (LK) + 3 7Y O+ O]
i=1 i=1

3

In Eq. (3), noise ©,,; can be ignored as compared to im-
age irradiance Y[’fl. Meanwhile, when NNV is large enough,

> ©g,; can also be ignored. Then Eq. (3) is simplified as,
i=1

N
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i=1 i=1

~ —LnN +~vK + O(*K?) + Ln Z aqY") (6)

i=1

With adequate production quality control, a sensor chip’s
PRNU noise should be bounded. Typically, the value of K
is restricted in [—0.5,0.5] and v ~ 0.5. So the higher order
term O ('yQK 2) can be ignored. Thus a first-order approx-
imation for Eq.(6) would be adequate. Moreover, when N
tends to be infinite, we have

N
lim & 3]V = Elg] V) = Ep BV ()
N—o0 i=1

Of which, we suppose the image irradiance Y; and color chan-
nel gain factor g; are mutually independent. For the random
noise images are generated with a constant mean, and g; is

a global variable independent of pixel location (z,y) within
each image, then

Elg]"EY]" =C ®

where C'is a constant independent of pixel location (z, y).
Bringing Eq. (6) and Eq. (8) together, we can forecast that
when N tends to be infinite, K (with a scaling factor 7) can be
obtained simply by eliminating the DC part of the average im-
age. In practice, when the condition is not very ideal, Eq. (8)
will not hold strictly. Nevertheless, taking consideration of
the linear manipulations in the digital imaging process, such
as point spread function, interpolation algorithm of decoding

mosaic, we can still suppose that Ln( Z g7 Y,”) can be modeled

locally as the auto-regressive and moving average (ARMA) model.

Then when K is assumed to be a stationary ergodic noise, specifi-
cally the WGN, then the optimal estimation of K can be obtained
through applying locally the 2-D Wiener filter Fuicnera(+):

= [LnZI

In practice, Eq. (9) is a near-optimal estimation of PRNU, since the
higher order term O (72 K 2) is ommitted in the derivation.

This solution is different from most existing SPN extraction
methods [15, 19, 1, 4, 12, 20, 18, 2, 21, 10, 9], which works by
denoise each individual photo. It only needs to denoise one image,
e.g. the logarithm of the average image, for each SPN extraction.
Meanwhile, the optimal choice of denoising filter in this solution
is always determined, so one will not waste any time on finding a
“good” denoising filter among a dozen of existed ones as to adapt
Ad-Hoc experimental circumstances. The principles derived above
can guarantee that it works to a certain degree even in the worst case.

wzener2 Ln Z I (9)

3. EXPERIMENTAL RESULTS

As mentioned in Section 1, the ground-truth SPN of a common con-
sumer digital camera is hard to obtain in practice, existing methods
[15,19, 1,4, 12,20, 18,2, 21, 10, 9] often use the results of source
camera identification test as the indirect measurement of SPN ex-
traction effectiveness. The essence of source camera identification
test is to use the SPN K obtained from an inspected camera to carry
out signal detection on the weak SPN signal K contained in a testing
image I,. According to [18], the optimal detector of PRNU noise K
is

XIDZK (@) Ii (z,y) Wi (x, y)

Nee (KL, W) =

Z Z Wi(z,y)*
(10)

;El (x,y) K (z,
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where KI; means the element-wise multiplication of two matrices
K and I;. W; is the noise residual obtained by denoising I;. The
identification performance of K can then be revealed by evaluating
Eq. (10) with a large collection of testing images from both the in-
spected camera and many other cameras and draw an ROC curve.

Here we compared the source camera identification performance
of the PRNU noise obtained with the proposed algorithm and the
algorithm proposed in [2]. The experiment involved four patterns
of digital camera, say Canon PowerShot A610, Canon PowerShot
A650, Nikon D300, Sony DSC T77. Each camera is used to obtain
an SPN extraction image data set and a natural scene image data set
for testing. Each data set contains 200 JPEG images and only the
128x128 center block of the green channel of each image is used
in the experiment.! The PRNU noise extraction image data sets are
obtained with our proposed experiment method addressed in Section
2.1. And the natural scene image data sets contain randomly pho-
tographed indoor/outdoor scenes. Following the settings in [ 18], the
noise residual W; and PRNU noise K used the same denoising filter
which is the wiener? filter in Matlab.

(a) (b)

(c) (d)

Fig. 2: PRNU noise enhancement. (a) and (c) is the PRNU
noise before and after the enhancement; (c) and (d) are the
magnitude spectrums of (a) and (c) respectively.

The extracted “original” PRNU noise needs to be further en-
hanced [15, 18, 9], so as to restrain the cyclical peak in SPN magni-
tude spectrum caused by color filter, JPEG blocking effects, screen
cyclical structure and the shock in photographing. Meanwhile,
screen warping and hand-shaking can cause strong interference in
horizontal and vertical direction. As shown in Fig. 2, the influence of
such interference factors can be restrained by setting the magnitude
spectrum of these frequency components as zero.

IROC curves for larger image blocks(e.g. 1024x1024) are visually akin
to “right angle”s, despite their extraction method. Then hardly any difference
can be observed from their plots.
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Fig. 3: Source identification ROC curve comparison of the
proposed and the reference method[2]. (a) Nikon D300; (b)
Canon 610; (c) Sony T77; (d) Canon 650. The reference
method is denoted as Scheme A, while the proposed method
is Scheme B. The horizontal and vertical axies are the False
Positive Rate(FPR) and True Positive Rate(TPR) respectively.

Figure 3 shows the ROC curves obtained from the proposed and
the reference method. Of which, the ROC performance of the pro-
posed method in Fig.3b, 3c, 3d has been improved as compared with
the reference method, while in Fig. 3a they are at least identical.

4. CONCLUSION

In this work, we considered the problem of extracting forensic SPN
from very large image data set and proposed a solution which is
made up by an experimental and an algorithmic methodologies. The
resulted solution is a trade-off between computational efficiency,
theoretical optimality, and experimental repeatability. These efforts
might help to standardize the SPN extraction procedures and perfor-
mance evaluation for its future applications on formal occasions.

The proposed methodologies also have certain limits. For ex-
ample, the experimental configurations will inevitablely affect the
PRNU estimation accuracy in some degree. Moreover, when the im-
age number N is not significantly large, e.g. N < 20, the derivations
in Section 2.2 will no longer be valid. Consequently , the estima-
tion of PRNU will deteriorate which might induce an inferior source
identification performance, compared with the reference method[2].
Meanwhile, due to the limited space, some important issues are not
described in details or discussed extensively here. For example, the
detailed settings of the proposed experimental methodology; How
would the proposed algorithm behave on large nature image data
set? These will be addressed in our future works.
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