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ABSTRACT

Electric Network Frequency (ENF) based forensic analysis is a
promising tool for timestamp authentication and forgery detection
in such multimedia recordings as audios and videos. ENF signal is
embedded in an audio recording due to electromagnetic interference
from the power lines. The time of creation of a multimedia recording
can be determined by comparing the ENF signal embedded in the
recording with a reference ENF database collected from the power
grid. In this paper, we conduct a study of the effect of recapturing
of audio recordings on the ENF embedding. We demonstrate that
recaptured audio recordings pick up two ENF signals: the content
ENF signal which is inherited from the original audio recording;
and the recapturing ENF signal which is embedded from the recap-
turing process. Conventional ENF signal extraction techniques on
such recordings may fail when the two ENF signals are at the same
nominal value. A decorrelation algorithm is proposed to extract the
content ENF signal and the recapturing ENF signal. The experi-
mental results show the effectiveness of the proposed method in the
estimation of both the ENF signals.

Index Terms— Electric Network Frequency (ENF), Recaptured
audio recordings, Frequency estimation.

1. INTRODUCTION

Today, an increasing amount of digital information is available in
the form of audio, video, and other sensor recordings. These record-
ings are often stored with the metadata that describes such important
information as the time-of-recording and the location of recording.
With digital tools, it has become easy to modify this information.
When media recordings are used in critical applications such as law
enforcement scenarios, the authentication of such digital recordings
including metadata is important. As time and location information
in metadata is easy to be tampered, an emerging direction exploits
the Electric Network Frequency (ENF) to perform authentication
[1, 2, 3].

ENF is the supply frequency of power distribution networks in
a power grid. The nominal value of the ENF is usually 60 Hz or 50
Hz, and it fluctuates slightly around its nominal value with time. The
main trends in the fluctuations have been shown to be similar within
the same power grid. Multimedia recordings created using devices
plugged into the power mains or located near power sources can of-
ten pick up the ENF signals: due to electromagnetic interference or
acoustic vibrations into audio [1] and due to invisible flicking in in-
door lightings into videos [4]. It has been shown that the ENF signals
extracted from the audio recordings exhibit a high correlation with
the ENF extracted from the power mains signal at the corresponding
time. By comparing these two ENF signals, the time of creation of
the recording can be determined. ENF signal extracted from an au-
dio has also been used to detect regions of tampering by analyzing
its phase continuity [2]. Recently, improved methods for ENF signal

estimation and ENF signal matching for media timestamping have
also been proposed [5, 6, 7].

As ENF signal is embedded into multimedia recordings at the
time of recording, several interesting questions arise about the ENF
traces in recaptured audio recordings. If the recapturing of the
recording is conducted in the region of the same nominal ENF as
the original recording, the ENF traces due to the two recording pro-
cesses may overlap with each other. How will such overlap affect
the quality of the ENF signal extraction? ENF signals in recaptured
audio recordings may contain two components: one is inherited
from the original recording, referred to as the content ENF signal;
and the other is embedded during recapturing process, referred to as
the recapturing ENF signal. The content and the recapturing ENF
signal may have different energies; signal with a higher energy is
referred to as the dominant ENF and that with a lower energy as the
latent ENF.

The question of ENF extraction in recaptured audio is also rel-
evant with analyzing recordings of historical importance. For ex-
ample, such historical recordings as NASA Apollo lunar mission
audio recordings [8] and President Kennedy’s White House con-
versations [9] were conducted in the analog era of 1960’s. These
recordings were recently digitized and made available online. Sev-
eral interesting tasks can be done using such recordings. For ex-
ample, multiple channels of NASA Apollo mission recordings can
be used to create a time synchronized exhibit of the mission. As
an ENF signal is time-varying, it can potentially be used to auto-
matically align multiple audio recordings archived from such histor-
ical events. However, due to the digitization process, the recordings
available online may also have been affected by the ENF signals cor-
responding to the time of digitization. No prior work has addressed
the effect of recapturing of audio recordings on ENF signals.

As will be shown later in the paper, conventional ENF estimation
techniques can only extract the dominant ENF signal. This observa-
tion motivates us to design algorithms to extract both the dominant
and the latent ENF signals from recaptured recordings. As audio
recapturing can also be used as an “anti-forensic” strategy by an
adversary to alter the ENF traces to mislead a forensic examiner,
developing techniques to extract multiple overlapping ENF signals
may also complement the existing techniques to counter such anti-
forensic operations [10].

In this work, we propose a decorrelation based algorithm to esti-
mate both the dominant and the latent ENF from a recaptured audio.
After estimating the dominant ENF using conventional ENF signal
estimation techniques, a residual signal is computed by subtracting
the estimated dominant ENF signal from the original signal. The
latent ENF is then estimated from the residual signal.

2. ENF SIGNALS IN RECAPTURED AUDIO RECORDINGS

ENF signal is generally present around its nominal value and the
higher order harmonics in an audio recording. A simple way to visu-
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alize its presence in audio is through spectrogram. The audio signal
is divided into overlapping frames, and for each frame a high preci-
sion FFT is computed. In Fig.1 (a) and (b) of the spectrograms of an
audio signal and the power mains signal recorded at the same time,
we observe a strip of time-varying energy at 120 Hz and 60 Hz, re-
spectively. This energy distribution corresponds to the ENF signal
in these recordings. There are various ways to estimate the instan-
taneous frequency, and some comparisons are carried out recently
in [7, 6]. We use the weighted energy method [4] as an example
technique in this paper for its low complexity. The ENF signal is es-
timated by computing the dominant instantaneous frequency of each
frame around the frequency of interest by:

F (n) =

∑L2
l=L1

f(n, l)|s(n, l)|∑L2
l=L1

|s(n, l)|
, (1)

where fs andNFFT are the sampling frequency of the signal and the
number of FFT points, respectively; L1 = (fENF−∆f)NFFT

fs
and

L2 = (fENF +∆f)NFFT
fs

; f(n, l) and s(n, l) are the frequency and
energy in the lth frequency bin of the nth time frame, respectively.

(a) Spectrogram of an audio signal at 2nd

harmonic (120 Hz).
(b) Spectrogram of the corresponding

power signal at 60 Hz.
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(c) ENF signal estimated from the audio
signal.
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(d) ENF signal estimated from the power
signal.

Fig. 1. Spectrograms and ENF estimates from audio and power sig-
nals recorded at the same time.

In Fig.1 (c) and (d), we plot the ENF signal estimated from the
audio and the power recording. As can be seen from these figures,
the audio ENF signal shows very similar fluctuations as the power
ENF signal. If the ENF signal is continuously recorded from the
power grid to form a reference database, the audio ENF signal can
be compared with the database to determine the time of recording
using the normalized cross-correlation coefficient [4].

As the aim of this work is to analyze the ENF signals present
in a recaptured audio, we conduct the following experiment to test
the robustness of ENF signals to a recapturing process. An audio

is recorded in an office using a digital recorder. To simulate the
conditions of recapturing, we play this recording on a stand-alone
speaker in an acoustic anechoic chamber and re-record it using a
digital recorder. Fig. 2(a) and (b) show the spectrograms of the origi-
nal recording and the recaptured recording, respectively. From these
figures, we observe that the ENF signal is present at the harmonic
frequency of 240 Hz in the original recording and the recaptured
recording. High correlation is observed between the ENF signals ex-
tracted from the original and recaptured recordings around 240 Hz.
When we switch-off the replayed audio, the energy peak present at
240 Hz in the spectrogram of the recaptured audio recording disap-
pears. This happens because no interference is present from power
lines at 240 Hz in the acoustic chamber. In this example, the content
ENF signals and the recapturing ENF signals are not interfering with
each other.

As another example, we show in Fig 3 (a) the spectrogram of
a historical recording from the President Kennedy’s White House
conversations, which are available at [9]. This recording was con-
ducted in 1962 on an analog tape and digitized later. From this fig-
ure, we observe that two different ENF signals are present near 240
Hz, and one of them (present around 239 Hz) disappears well be-
fore the end of audio. After listening to the audio, we note that the
original recording is turned off at this time. We conjecture that the
239 Hz signal is the content ENF signal and the 240 Hz signal is the
recapturing ENF signal.

The two examples have demonstrated the case when the con-
tent ENF signal and the recapturing ENF signal are non-overlapping.
From such recordings, both the ENF signal can be extracted eas-
ily by using suitable bandpass filters followed by conventional ENF
estimation techniques around the frequency of interest. In less fa-
vorable cases, however, the content ENF signal and the recapturing
ENF signal may overlap and interfere with each other. To illustrate
this scenario, we conduct a recording in the acoustic chamber and
recapture it in the same place. As the ENF signal in the same room
is embedded from the electromagnetic influences of the same power
sources, the content ENF and the recapturing ENF are overlapping
at a frequency of 120 Hz. From the spectrogram of the recaptured
audio shown in Fig. 3 (b), we observe that for the duration of the
playback of the original audio on the speaker, the content ENF and
the recapturing ENF overlap with each other and the energy distri-
bution of the spectrogram appears noisy. After the original audio is
switched-off, the ENF signal becomes cleaner as only the recaptur-
ing ENF is captured.

(a) Original Audio

Speaker Turned Off 

(b) Recaptured Audio

Fig. 2. Spectrograms of the original and recaptured recordings.
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Original Recording  
Turned off 

(a) Digitized Kennedy conversation
recording.

Original Recording  
Turned off 

(b) Recaptured audio signal with
overlapping ENF signals.

Fig. 3. Audio recording spectrograms.

3. ENF ESTIMATION FOR RECAPTURED AUDIO
RECORDINGS

3.1. Synthetic Experiments

Conventional ENF signal estimation methods extract dominant fre-
quencies in a narrowband around the frequency of interest (nominal
ENF or its harmonics) of a given signal. As the content ENF sig-
nal and the recapturing ENF signal in recaptured recordings may be
overlapping with each other at the same frequency range, the con-
ventional methods fail to extract both the ENF signals. To demon-
strate this, we generate two frequency sequences, Ed(t) and El(t),
as following:

Ed(t) = 60 +Nd(t)

El(t) = 60 +Nl(t),

where Nd(t) and Nl(t) are drawn from i.i.d. Gaussian random pro-
cesses of zero mean and variance 0.1. Using these two signals, we
generate a time domain signal that varies according to the frequen-
cies Ed(t) and El(t) as follows:

s(t) = cos(2π

∫ t

0

Ed(τ)dτ) +

√
α cos(2π

∫ t

0

El(τ)dτ) +N(t), (2)

where N(t) is a Gaussian random process of zero mean and unity
variance, and α is a constant with 0 ≤ α ≤ 1. We see from
Eq. (2) that signal s(t) consists of two sinusoids of different am-
plitudes with Ed(t) and El(t) being their instantaneous frequencies
at time t. Based on this model of s(t), Ed(t) is the dominant ENF
signal and El(t) is the latent ENF signal, as the energy of sinusoid
corresponding to Ed(t) is greater than El(t).

We use the expression for weighted energy frequency estima-
tion given by Eq. (1) to extract the ENF signal from s(t). We
compute the normalized cross-correlation (NCC) between the esti-
mated ENF signal and the ground truth frequency sequences Ed(t)
and El(t), respectively. The experiment is repeated multiple times
with different realizations ofNd(t),Nl(t), andN(t). The mean and
the variance of the NCC values obtained for different values of α
is shown in Fig. 4. From this figure, we observe that when there
is a significant difference between the energy of the dominant ENF
and the latent ENF, the correlation between the extracted ENF and
the dominant ENF is very high ( 0.6-0.7 range). However, as the
energy of the latent ENF signal increases, this correlation value de-
creases and become very low (< 0.3 for α close to 1). Similar results

were obtained for other frequency estimations methods such as the
subspace based MUltiple SIgnal Classification (MUSIC) and Esti-
mation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT). Our preliminary results also show that these subspace-
based approaches can only obtain reliable estimates when there is a
sufficient margin betweenEd(t) andEl(t). This experiment on syn-
thetic data verifies that the conventional ENF estimation techniques
fail to extract the overlapped ENF signals, which is usually the case
with recaptured audio recordings. In the following subsection, we
describe a new algorithm to extract both the dominant and the con-
tent ENF from recaptured audio recordings.
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Fig. 4. The mean and the Variance of the NCC values.

3.2. Proposed Approach for ENF Signal Extraction

Our proposed algorithm to extract both the dominant and the latent
ENF signals in a recaptured audio works in two stages: the domi-
nant ENF is first estimated, followed by the estimation of the latent
one. As discussed in Section 3.1, the dominant ENF, denoted by
Ed(t), in an audio s(t) can be estimated using conventional estima-
tion techniques such as the weighted energy method. After estimat-
ing Ed(t), we match it with the reference ENF database from the
power grid to estimate the time of the dominant ENF signal embed-
ding into the recording. We then subtract the power signal corre-
sponding to the time of recording of the dominant ENF signal from
the audio recording. As the magnitude of power measurements and
the actual embedding in the audio may be different, the subtraction
is done by estimating the appropriate scaling factor of the magnitude
that makes the ENF signal of resulting audio signal ŝ(t) maximally
decorrelated with the ENF signal of the power recording correspond-
ing to the time of dominant ENF embedding estimated before. More
specifically, we have:

ŝ(t) = s(t)− â · P (t), with

â = argmin
a

{corr(ENF (s(t)− aP (t)), ENF (P (t)))} ,

(3)

where P (t) is the power measurement signal at time t and â is the
estimated magnitude of the power. ENF (·) denotes the weighted
frequency estimation function. As can be understood from the equa-
tion, the selection of â is essentially to search for the relative ampli-
tude of the dominant ENF signal in the audio signal, with respect to
the power signal. Ideally, after the decorrelation process, the result-
ing signal ŝ(t) is free from the traces of Ed(t). The ENF signal that
is left in ŝ(t) would come from the latent ENF signal, El(t). So we
estimate it using again the weighted frequency estimation approach
on ŝ(t).
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To show the effectiveness of the proposed algorithm in extract-
ing the dominant and the latent ENF, we conduct experiments on
audio data. An audio recording was made in an acoustic anechoic
chamber and recaptured later in the same place. The power mea-
surements were also recorded during both the original recording and
the recapturing process. The content ENF and the recapturing ENF
signals are present around 120 Hz in this case. The ENF extracted
directly from the recaptured audio signal shows similar fluctuations
with the ENF signal estimated from the power signal at the time of
the original recording (NCC 0.62), as can be seen from Fig. 5. So
the content ENF signal is the dominant signal in this case. We then
decorrelate the recaptured audio by subtracting the estimated domi-
nant ENF signal as discussed previously. Since the ENF signal in the
power measurement recording is centered around 60 Hz, we transfer
it to 120 Hz by squaring the power signal and then feeding it into
a bandpass filter with a narrow passband around 120 Hz. The pro-
cessed power signal is used for decorrelation as in (3). The ENF
signal estimated from the decorrelated audio signal shows high cor-
relation with the ENF signal extracted from the power measurements
at the time of recapturing (NCC 0.68). Both the content ENF and re-
capturing ENF are now successfully extracted from the recaptured
audio recording using the proposed decorrelation method.
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Fig. 5. ENF fluctuations as a function of time. (a) the ENF from
the power measurement signal at the time of the original recording;
(b) the ENF rom the power measurement signal at the time of recap-
turing; (c) the dominant ENF estimated from the recaptured audio
recording; (d) the ENF estimated from the decorrelated audio signal.

4. APPLICATIONS OF RECAPTURE DETECTION

Under the assumption that the reference measurements from the
power grids are available, the proposed decorrelation algorithm can
be used for audio recapture detection, i.e., identify whether the given
audio recording is original or a recaptured version. As discussed
earlier, two ENF signals are embedded in a recaptured audio record-
ing. The ENF signal estimated directly from a recaptured audio
recording is the dominant ENF signal Ed. After decorrelation, the
latent ENF signal El can be extracted from the residue audio signal.
When comparing with the reference ENF database measured from
power mains, these two ENF signals should match with different
segments of the reference database, the time index of which are
denoted as Td and Tl, respectively.

If the recording is original, Td and Tl are likely to be of similar
values. In cases where Td and Tl are very different, the peak corre-

lation C, that is calculated between the ENF signal estimation from
the decorrelated audio signal and the reference database, should be
low since it is a false match. Under a hypothesis framework, the H1

and H0 cases and the decision rule can be formulated as follows:{
H1 : Test audio is recaptured.
H0 : Test audio is original.

1(|Td − Tl| > δ)× C
H1

R
H0

τ

Here 1(·) is an indicator function, and τ is a decision threshold.
We conduct the following experiments to evaluate the proposed

audio recapture detection scheme. Audio recordings were made in
the acoustic chamber and a conference room. Some of these record-
ings were then recaptured in the acoustic chamber by playing on
a speaker with variant volumes. The total test dataset includes 8.5
hours of original recordings and 16 hours of recaptured ones. The
recordings are divided into short clips of 10, 20 and 30 minutes long,
and each clip is considered a test sample. We evaluate the false alarm
rate and detection rate with different values of τ to obtain the ROC
curves as shown in Fig 6. The detection accuracy is higher with
longer clips. Specifically, when considering audio clips of 30 min-
utes, 95% of the recaptured clips are correctly identified without any
false alarms.
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Fig. 6. ROC for audio recapture detection with different clip length.

5. CONCLUSIONS

In this work, we have considered the ENF signal analysis on recap-
tured audio recordings, which may contain two ENF signals: the
content ENF signal that comes from the original recording and the
recapturing ENF signal embedded during recapturing process. We
have demonstrated such scenarios by conducting experiments on our
recorded data and on a historical recording from President Kennedy
White House conversations archive. We have also shown that for the
cases where the content ENF signal and the recapturing ENF signal
are overlapping, conventional ENF estimation techniques can extract
only the dominant ENF signal as it has higher energy than the latent
ENF signal. For recaptured recordings, we proposed a decorrelation
based technique to estimate both the ENF signals. The proposed
technique have been shown to successfully extract the dominant ENF
and the latent ENF.
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