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ABSTRACT
Secure fingerprint authentication via encrypted-domain process-

ing imposes constraints on the underlying feature extraction method:
Firstly, it requires fixed-length feature vectors to be amenable to
computing distances or correlations. Secondly, extra information
must be stored in the clear so that the fingerprints can be aligned
prior to feature extraction and secure comparison. These constraints
potentially restrict the flexibility, increase computational complex-
ity, and even reduce the security of the scheme. We desire feature
vectors suitable for encrypted-domain matching while being free of
the above constraints. To this end, a local neighborhood is defined
around certain detected minutiae points, and features are extracted
based on relative locations of close minutia points, local ridge tex-
ture and local ridge orientation. The locality of the features provides
robustness to rotation and translation. Feature vectors are compared
using operations that can be performed using secure primitives. The
process of computing the matching scores – genuine or impostor –
implicitly yields the best alignment without needing to store unen-
crypted side information at the access control device. The scheme
achieves an Equal Error Rate of 1.46% on a proprietary database and
7.86% on the FVC2002 public database.

Index Terms— biometrics, fingerprints, feature extraction

1. MOTIVATION

Fingerprint-based access control involves extracting discriminative
features from an enrollment fingerprint and comparing them against
corresponding features extracted from a probe or test fingerprint.
There is an extensive literature on feature extraction for fingerprint-
based authentication and identification systems [1, 7]. Almost all
these schemes assume that the enrollment features computed are ei-
ther stored in the clear, or in the form of ciphertexts that are fully
decrypted during authentication. Thus, when the system is provided
with features from a test fingerprint, it is assumed that the enrollment
features are readily available for comparison at the access control de-
vice. This assumption breaks down for biometric template protection
systems, specifically those based on secure multiparty computation,
wherein enrollment features are stored in encrypted form, and never
decrypted during the authentication protocol.

Encryption ensures that an adversary does not discover the fin-
gerprint features of the enrolled identities at any stage of the authen-
tication protocol. The challenge, however, is that the device must
now perform the comparison of the test features and the enrollment
features in the encrypted domain. In the literature, encrypted-domain
comparisons are predominantly realized using homomorphic cryp-
tosystems and garbled circuits [2, 3]. Most of the schemes proposed
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in the literature involving the comparison of encrypted biometric
features have two characteristics: Firstly, the feature extraction al-
gorithm produces a fixed-length feature vector, which allows com-
parison of biometric features to be cast as a problem of determining
distances between the enrollment and test feature vectors. Secure
and nearly real-time protocols for computing distance metrics such
as Euclidean [4], Hamming [2, 3, 5] and Manhattan distances [6] are
now available. Secondly, to guarantee accurate biometric matching,
alignment must be performed between the enrollment and probe fin-
gerprints, even prior to feature extraction. Fingerprint registration is
a well-studied topic (see [7] for a survey), but most techniques do
not apply in a straightforward way to encrypted-domain authentica-
tion. Many works on encrypted-domain biometric matching either
do not treat the alignment problem or implicitly assume that they are
provided with aligned biometrics. Others allow the device to store
unencrypted alignment parameters, such as the locations of high cur-
vature points on the enrollment fingerprint [8, 9]. These parameters
enable the access control device to first align the test fingerprint to
the enrollment fingerprint, before extracting test features and com-
paring them with the enrollment features in the encrypted domain.

The above two characteristics impose constraints on the design
of the access control system. Firstly, requiring a fixed-length feature
vector reduces the flexibility of the feature matching scheme because
it cannot accommodate, for example, feature matching from cropped
images or fingerprints that produce very few minutia points. Sec-
ondly, though inferring minutiae locations or orientation fields from
high curvature points or other unencrypted alignment information is
difficult, this information may allow an adversary to guess whether a
fingerprint contains core, or tent or delta structures, thereby narrow-
ing his choice of attack vectors. Our goal is to develop a fingerprint
feature extraction scheme suitable for encrypted domain processing
that does not require the number of extracted probe features to be
equal to the number of stored enrollment features, and does not need
to explicitly perform alignment — thus removing the need to store
any alignment parameters.

We propose a new descriptor containing information about
minutiae structure, ridge texture, and ridge orientation from a lo-
cal neighborhood around key minutiae points. Due to the localized
nature of the feature extraction mechanism, the proposed approach
does not require any pre-alignment step. A fixed-length feature vec-
tor is derived for each keypoint, though enrollment and probe finger-
prints can have a different number of key points. This compromise
allows matching of local features using existing secure computation
methods, a procedure which implicitly performs alignment during
matching. We have recently became aware of an alignment-free
matching scheme that employs similar ideas as our work, especially
the idea of constructing local descriptors that can be matched using
a similarity matrix consisting of pairwise descriptor distances [10].
This scheme has a slightly different construction of minutiae-based
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features from the ones covered here, moreover, it does not employ
texture and orientation-based features or their fusion into a final
matching score. The remainder of this paper is organized as fol-
lows: The proposed keypoint descriptor is described in the Section 2.
Section 3, describes the performance of the proposed method on
two databases. Section 4 briefly summarizes the key features of the
alignment-free approach and concludes the paper.

2. A KEYPOINT-BASED FINGERPRINT DESCRIPTOR

In this work, a keypoint is defined as a minutiae point that contains at
least n minutiae as its neighbors within a circle of radius R. This no-
tion is made precise below. Our goal is to compute a fixed-length de-
scriptor for each keypoint that represents the fingerprint structure in
the local neighborhood of that keypoint. The descriptor is composed
of minutiae-based, texture-based and orientation-based features ob-
tained from the local neighborhood of each keypoint.

Let U
k

be the number of minutiae points in the k

th fingerprint
image. Typically, U

k

varies across impressions obtained from dif-
ferent fingers. Further, it also varies across impressions obtained
from the same finger owing to measurement noise. Represent the i
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that has a n-nearest neighbor set is considered as a keypoint.

2.1. Minutiae-Based Features

For each keypoint mk
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, the proposal is to extract features that can
uniquely represent the local geometric structure of N (mk
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Fig. 1. Example of a minutiae structure-based keypoint descriptor.
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Defining the feature vectors as above ensures that each feature
value is in [0, 1] range, and that keypoint features are invariant to ro-
tation and translation with respect to the keypoint. A diagrammatic
representation of the minutiae-based features around a keypoint mk

i

is given in Fig. 1 for the case of n = 3. The minutia-based features
represent the relative minutiae distances, relative minutiae orienta-
tions and the relative radial minutiae placement around the keypoint,
thus capturing the local structure in the neighborhood of the key-
point mk

i

. Unfortunately, in some fingerprint images, the number of
keypoints may be small and this adversely affects the matching per-
formance. To mitigate the effect of such fingerprints, we also employ
ridge texture and orientation-based features as explained below.

2.2. Ridge Texture-Based Features

To extract the ridge texture information around the location of key-
point mk

i

, a square patch of dimension R1 around m

k

i

is passed
through directional Gabor filters with dominant angle ⇡⇤p

P

, p =

{0, 1, . . . , P � 1} relative to ✓k
i

. From the output of each filter,
we calculate the standard deviation of the output image patch as a
feature, similar to the method used in [11, 12]. The feature obtained
can thus be represented as:

tk
i

=
1

tmax
[t0, t1, . . . , tP�1]

where t

p

, p = {0, 1, . . . , P � 1} denotes standard deviation of the
image patch obtained as the output of the directional Gabor filters at
an angle of ⇡p

P

. The normalizing constant tmax is the maximum value
of the standard deviation computed for all image patches around all
key points in the training set, and it is used to restrict each feature
vector into the range [0, 1]. An example of the texture-based feature
extraction for P = 4 is shown in Fig. 2. The filtered images show the
dominant ridge orientation in the range of corresponding angle of the
directional Gabor filters. The square patch represented in red around
the keypoint represents square patch of dimension R1 in which the
standard deviation is computed.

2.3. Ridge Orientation-Based Features

To extract the orientation features, we use the method proposed
in [13] which samples the ridge orientations in a regular radial sam-
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Fig. 2. Example of a texture-based keypoint descriptor.

Fig. 3. Example of a orientation-based keypoint descriptor.

pling grid around the keypoint. As shown in Fig. 3, the sampling
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Division by ⇡ ensures that each feature element is in the range [0, 1].
After deriving the minutiae-based, texture-based, and

orientation-based descriptors around each key-point, the de-
scriptor for the k

th fingerprint image is obtained by concatenating
the descriptor for each key-point as follows:
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For a query fingerprint, feature extraction is performed exactly
as described above, and matching scores between the query and the
enrollment fingerprints are obtained as described below.

2.4. Fingerprint Matching

The features extracted from the given query image are matched with
the claimed enrollment features in the database, using a keypoint-
wise pattern matching technique. The algorithm described below re-
turns a matching score that represents the similarity between the two
fingerprints. For conciseness, we describe the matching algorithm
using only minutiae-based features; the same algorithm is used for

comparing the texture descriptor and orientation descriptors of the
enrollment and probe fingerprints.

Following the notations from the previous section, denote by
Mk and M0 the keypoint minutiae descriptor of the k

th enrollment
and the query fingerprints, respectively. Let there be U

k

minutiae
key-points in Mk and U

0 key-points in M0. The matching method
estimates one-to-one correspondences between the key-points in the
probe and enrollment fingerprints. To accomplish this, it is nec-
essary to have a measure of similarity between the minutiae-based
descriptors Mk = {mk

i

}Uk
i=1 and M0 = {m0

j

}U
0

j=1. We define a
U

k

⇥ U

0 similarity matrix whose elements are given by S(i, j) =
kmk

i

� m0
j

k1 . Indices (i, j) of elements having a small value in
the matrix S are indicative of a potential correspondence between
keypoints. We consider that keypoint i in Mk and keypoint j in M0

match if the corresponding descriptors are more similar to each other
than to descriptors from any other keypoint pairs in Mk and M0.
This is formulated into the following measure of correspondence:

P
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S(i, j)

P
U
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j
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0) +
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Uk
i
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0
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After the matrix Pm is computed, the coordinates of the minimum
value in Pm indicate a match between a keypoint in the enrollment
fingerprint and a key point in the probe fingerprint. The correspond-
ing column and row are removed and the process is repeated until
all keypoint matches are identified. Finally, the number of matching
points whose correspondence value is less than a certain threshold
⌧

m

is used to compute the matching score as

S
m

=
Mmatched

min(U
k

, U

0)

where Mmatched is the number of keypoint correspondences (i, j) for
which P

m

(i, j)  ⌧

m

. Similar score calculation is performed for
texture-based and orientation-based descriptors to obtain scores S

t

and S
o

, respectively. The value of the threshold ⌧
m

, and correspond-
ing thresholds ⌧

t

and ⌧
o

for texture and orientation based descriptors
can be derived empirically. The scores can now be used to compute
the receiver operating characteristic (ROC) curves, either individu-
ally, or in combinations of two or three feature types, for e.g., when
all three scores are to be used, the fused score is the linear com-
bination, S = w

m

S
m

+ w

t

S
t

+ w

o

S
o

, where the weights satisfy
w

m

+ w

t

+ w

o

= 1. The values of w
m

, w

t

, w

o

are obtained by
running an exhaustive search to minimize the equal error rate (EER)
on a training subset of the dataset, as will be described in Section 3.

3. EXPERIMENTAL RESULTS

The proposed scheme is evaluated separately on two databases,
a proprietary database labeled “DTL” and the public-domain
FVC2002 database [14], each of which consist of 100 fingerprints
with 8 impressions per fingerprint. To learn the weights w

m

, w

t

and
w

o

for score level fusion, impression #1 of each finger is matched
with all other impressions of that finger, giving 700 genuine scores.
Also, impression #1 of each finger is matched with impression #2 of
all other fingers to obtain 9900 impostor scores. Exhaustive search is
used to obtain the values of w

m

, w

t

, w

o

that minimize the Equal Er-
ror Rate (EER) for the scheme employing the fused matching score.

For matching in the testing phase, each impression of each fin-
ger is compared with all other impressions for the same user, giving
2800 genuine scores. For impostor matching, impression #1 of each
user is compared with impression #1 of all other users, giving 9900
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(a) Genuine: finger #31 imp. #1 & imp. #2

(b) Impostor: finger #31 imp. #1 & finger #11 imp. #1

Fig. 4. Correspondences obtained by finding smallest entries of Pm.
Green lines denote key-point matches retained after thresholding by
⌧

m

, Red lines are matches rejected after thresholding by ⌧
m

.

impostor scores. The values of the parameters described in Section 2
are: n = 2, R = 90, P = 8, L = 3, r1 = 27, r2 = 45, r3 = 63,
K1 = 10, K2 = 16, K3 = 22, R1 = 50, ⌧

m

= 0.102, ⌧
o

= 0.155,
and ⌧

t

= 0.075 for both databases. These values are determined
empirically, and may change for different biometric sensors.

An example of matching using the proposed keypoint descrip-
tor is given in Fig. 4. The genuine match produces a large num-
ber of nearest neighbor correspondences in which the score is less
than the threshold ⌧

m

, while the impostor match produces very few
such correspondences. The ROC curves obtained after using the pro-
posed algorithm on the DTL and FVC2002 databases are shown in
Fig. 5. Among minutiae-based, texture-based and orientation-based
features, the former provide the best performance, confirming that
minutiae are the most discriminate features in a fingerprint. Com-
bining the features via score level fusion as described in Section 2
improves the performance. Table 1 lists the EER of the proposed
approach on the two databases for training and test cases described
above. The results depend on the homogeneity of the data set, or
more precisely, on the differences between the training and test data
sets. In particular, for the DTL dataset, which is more homogeneous,
the EER is lower for the test set than the training set. However, for
the FVC dataset, which has more variation among a user’s finger-
print impressions, this situation is reversed. To confirm that this

Descriptor DTL DTL DTL FVC FVC FVC
type (train) (test) (best) (train) (test) (best)
M 4.67 2.43 2.43 7.78 10.74 10.74
T 9.81 7.99 7.99 21.70 28.56 28.56
O 8.44 5.78 5.78 9.57 12.83 12.83

M+T 2.66 1.77 1.61 7.24 11.74 10.74
M+O 2.65 1.71 1.70 4.84 8.03 7.53
O+T 6.39 4.93 4.45 9.21 11.97 11.72

M+T+O 1.75 1.46 1.32 4.23 7.86 7.53

Table 1. EER for minutiae (M), texture (T), and orientation (O)
based descriptors. Below, “train” refers to fusion weight estimation
on training data, “test” refers to using trained weights on test data,
“best” refers to the oracle case, i.e., weight estimation on test data.
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Fig. 5. ROC of individual features (above) and combination of dif-
ferent features (below) for the proposed descriptor (testing phase).

is not an accident, we also determined the best performance when
weights are optimized on the test set, as shown in Table 1. Evidently,
fusion of scores from different descriptors reduces the EER, which is
lowest when all three descriptors are combined. We conjecture that
the EER for FVC2002 is worse because it contains noisier images,
has higher variability across the images, and suffers from missing
minutiae across genuine fingerprint pairs of many users.

4. SUMMARY

The proposed algorithm uses minutiae-based, texture-based, and
orientation-based descriptors in the local neighborhood of a minutia
keypoint. This is not constrained to be a fixed-length feature repre-
sentation since different fingerprint impressions can contain a differ-
ent number of keypoints. However, individual descriptors do have a
fixed length, allowing pairwise distance computation and determina-
tion of keypoint correspondences between pairs of fingerprints. The
mathematical operations required to obtain these correspondences
can be performed in the encrypted domain. The design of efficient
and secure protocols for this purpose is a part of our ongoing work.
Significantly, no alignment is performed prior to feature extraction;
alignment happens implicitly as a byproduct of obtaining the match-
ing scores. The obtained EER is competitive with schemes that store
explicit alignment information at the access control device [9].
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