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ABSTRACT 

 
One of the greatest challenges for gait recognition is identification 
across appearance change. In this paper, we present a gait 
recognition method called Sparse Grassmannian Locality 
Preserving Discriminant Analysis. The proposed method learns a 
compact and rich representation of the gait images through sparse 
representation. The use of Grassmannian locality preserving 
discriminant analysis further optimizes the performance by 

preserving both global discriminant and local geometrical structure 
of the gait data. Experiments demonstrate that the proposed 
method can tolerate variation in appearance for gait identification 
effectively. 

 

Index Terms— Gait recognition, locality preserving 

discriminant analysis, Grassmannian manifold, sparse 
representation 

 

1. INTRODUCTION 

 
Recently, gait recognition appears as a promising method for 
personal identification in surveillance applications. Gait 
recognition is a biometrics that identifies people by the way they 
walk. The suitability of gait recognition for surveillance 
application emerges from the fact that gait can be observed from a 
distance without requiring cooperation or even awareness of the 

people under observation. Other biometrics like face recognition 
might not work well for surveillance systems because people can 
disguise or hide their faces. Fingerprint and iris recognition are 
also not usable when the images are at too low a resolution. 
Although gait recognition has the potential to be deployed in visual 
surveillance to recognize people at a distance, the performance of 
the system suffers from deviation of the gait appearances in real 
world applications. Gait images of the same person might appear 

differently due to changes in view angle, clothing, carrying 
condition, walking speed and lighting factor. Studies showed that 
single-view gait recognition performance drops when the view 
angle changes  [1–3].  

Current approaches to gait recognition under various viewing 
angles can be classified into one of the three major categories: 1) 
extraction of view-invariant gait feature, 2) generation of 3D gait 
information, and 3) learning projection or mapping functions to 

transform gait features from various views into a common feature 
space. The first approach attempts to find gait features that are 
invariant to view changes like body part trajectories [4], estimated 
joint positions [5], and synthesis of a canonical side view [6]. 
Although these methods provide robust representations of the gait 
feature, they can only work with limited range of viewing angles 

and the accuracy can be affected by self-occlusion. The second 
approach integrates 3D information from multiple cameras to 
construct a gait model [7], [8], [9]. The drawback of these 3D 
analysis methods is that they require complicated setup of a 
calibrated multi-camera system. Besides, these methods demand 

complex and expensive computation which makes them unsuitable 
for real-time application. The third approach learns some 
mapping/projection function to normalize the gait features obtained 
from various viewing points to a shared feature space. Methods 
like view transformation model (VTM) [10], Multiview Subspace 
Representation (MSR) [11], and canonical correlation analysis [2] 
were introduced. These methods generate more stable gait features 
and they are less sensitive towards noise as compared to the 
methods in the first category. Furthermore, the methods in this 

category deploy simpler camera setup when compared to those in 
the second category.  

In this paper, we propose a gait recognition method in the 
third category called Sparse Grassmannian Locality Preserving 
Discriminant Analysis (SGLPDA). This method extends the idea 
of Grassmannian learning proposed in [13], [14] by incorporating 
sparse representation (SR) in the algorithm. In gait recognition, the 
video of a walking person usually contains many variations. The 

gait data is thus distributed in a non-linear manifold. By 
formulating the gait recognition problem on the Grassmannian 
manifold, we can work in higher order data structure to harness the 
non-linear structure of the data and yet benefit from the 
conventional vector-based computation. With the incorporation of 
SR in our learning method, we can further attach semantic meaning 
to the gait data. The ability to uncover semantic information from 
the gait data is particularly useful when we need to recognize the 

gait appearances of the same person with vast variations. For 
example an image depicting a person wearing shirt and pants 
appears very differently than that of showing the person wearing 
long traveling cloak that covers most part of the body. SR allows 
us to represent these variations in a compact and representative 
basis which we found to be very useful in classifying gait features 
with various appearances. The contributions of the paper are two-
folds: 1) construction of GLPDA to preserve both local 

geometrical structure and global discriminative information of the 
gait data; and 2) incorporation of SR in GLPDA to model the gait 
images effectively.  
 

2. BACKGROUND 

 

2.1. Grassmannian Manifold 
The Grassmannian manifold G(m, D) is a set of m-dimensional 
linear subspaces of the ℝD. It is computationally efficient to 

compute the distances between two points on the Grassmannian 
manifold using the principal angles [12]. Various distances have 
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been defined based on the principal angles, and some well-known 
distances are the Binet-Cauchy, projection, correlation, and 
Procrustes distances. Among the various distances, the correlation 
measure, projection distance, and Binet-Cauchy distance are 
induced from positive definite kernels. This means we can define 

the corresponding kernels on the Grassmannian manifold based on 
these matrices. In this paper, the projection kernel and canonical 
correlation kernel  are adopted as they are reported to provide good 
result [13], [14]. Given two points on a Grassmannian manifold, Xi 
and Xj ∈ ℝDxm, the similarity between the points is defined as: 

          ‖  
   ‖ 

 
 (1)  

           
  ∈        

   
  ∈        

  
    (2)  

subject to   
      

      and   
      

         . k_proj 

denotes the projection kernel while k_cc signifies the canonical 
correlation kernel. 

 

2.2. Sparse Representation (SR) 
In the past few years, SR has proven to be a powerful tool for 
image processing, computational biology, statistics, pattern 
recognition and other applications [15–17]. Given a signal, or the 

column vector of an image in our case,   ∈ ℝ  and an 

overcomplete dictionary [18] with k bases,   [          ] ∈
ℝ   , the goal of SR is to represent xi using as few entries of X as 
possible. The objective function can be defined as follows: 

   ‖  ‖             (3)  

where Si denotes the contribution of each xj to reconstruct xi. 
However, it is NP-hard to find the sparsest solution for Eq. (2) 

using l0-minimization. As such, l1-minimization is often used to 
solve the problem [18]. In practical applications, there might be 
noises in signal xi. Therefore, the following optimization model is 
used to estimate Si: 

   ‖  ‖      ‖      ‖    (4)  

where ‖ ‖  is l1-norm and ε is the error tolerant term.  

 

3. PROPOSED APPROACH 

 
A simple yet effective approach called Gait Energy Image (GEI) 
[19] is deployed to represent the gait feature. Given a gait 

sequence {       }   
 , where         is a pixel at position (i, j) in 

the image It, and F is the total number of frames in the gait 
sequence, GEI is defined as: 

         ∑        
 

   
 ⁄  (5)  

One advantage of representing the gait feature using GEI is that we 
do not need to consider the underlying dynamics of the walking 
motion. This representation enables us to study the gait sequence 
from a holistic view by implicitly characterizing the structural 
statistics of the spatio-temporal patterns of the walking person. 
 

3.1. Grassmannian Locality Preserving Discriminant 

Analysis (GLPDA) 
The set of GEI images taken from the video sequence can be 
modeled as a collection of linear subspaces. We formulate the 
subspace matching problem on the Grassmannian manifold. By 
using a suitable Grassmannian kernel, the Grassmanian space can 

be treated in a similar manner as the Euclidean space. 

Conventional discriminant analysis tools like linear discriminant 
analysis (LDA) can thus be applied on the Grassmannian manifold 
to improve recognition accuracy [13], [14], [20]. LDA could not 
discover the local geometrical structure of the data manifold. 
Therefore, we used locality preserving discriminant analysis 

(LPDA) to reveal the local structure of the data. Different from 
traditional global linear methods such as LDA, LPDA utilizes both 
discriminant information and local geometry structure of the data 
manifold [21].  

We formulate the gait recognition problem by using the graph 
embedding framework [22]. Let G = {V, W} denotes an undirected 
weighted graph with vertices, V, and similarity matrix W. The 
elements in the similarity matrix are measures of the similarity for 

a pair of vertices. The values for W can be directly obtained from 
the output of the Grassmannian kernel. On the other hand, the 
diagonal matrix D and the Laplacian matrix L of the graph G are 

defined as L = D – W where     ∑       .  

We want to find a mapping function F:Yi→Zi to map the 

points on the Grassmannian manifold, M, to a new manifold, M’, 
so that the connected points of the within-class similarity matrix, 
Ww,ij, stay as close as possible while connected points of the 
between-class similarity matrix, Wb,ij, stay as distant as possible. 
To this end, we aim to optimize the following objective functions: 

   ∑        
      

  
 (6)  

   ∑        
      

  
 (7)  

The objective function Ww,ij
 

incurs a heavy penalty if 
neighboring points Zi and Zj are mapped far apart while they are 
actually in the same class. Likewise, the objective function Wb,ij 
incurs a heavy penalty if neighboring points Zi and Zj are mapped 
close together while they belong to different classes.  

Suppose U is a projection matrix, ZT = UTY, to realize the 
objective functions (6) and (7). By simple algebra manipulation, 
the objective function (6) can be reduced to: 

  ⁄ ∑ (     )
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(8)  

where Dw is a diagonal matrix given by       ∑       . 

Similarly, the objective function (7) can be condensed to the 
following form: 

  ⁄ ∑ (     )
 

  
     

   ∑ (  
      

   )
 
     

  
⁄

           
   

       
   

(9)  

where Db is a diagonal matrix obtained through       ∑       . 

Following the discussion in [21], the optimization problem reduces 
to finding: 

      
 

          

{                   } 
(10)  

where α is a constant and 0    . The projection matrix Y that 

minimizes (10) is given by the maximum eigenvalue solution to 
the generalized eigenvalue problem: 

                         (11)  
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Fig. 1. Overview of GSLPDA.  

 

3.2. Gait Recognition Using SGLPDA 
In this section, we describe in detail how SR can be embedded in 
the GLPDA method. Fig. 1 depicts the steps required in the 
proposed method. Given sets of GEI images obtained using Eq. 

(5), we compute SVD over the image sets to obtain the 
corresponding subspaces{V1, V2, …, Vn} where Vi ∈ ℝDxm and D 

refers to the length of the gait feature while m signifies the number 
of images comprising the subspaces. After that, we apply a 
Grassmannian kernel to convert the subspaces into points on the 
Grassmannian manifold. To this end, we have tested two types of 
kernel functions namely the projection and canonical kernels [13], 
[14] given in Eq. (1) and (2). The output of the Grassmannian 

kernel,  ̂  { ̂   ̂     ̂ }, is a     matrix. Next, we construct 

the between-class similarity graph, Wb,ij, and within-similarity 
graphs Ww,ij, by using SR. Suppose Sw is the sparse output 

estimated by Eq. (4) using the column vector of  ̂, the within-
similarity graphs is defined as, 

      {
             ̂ ∈   ( ̂ )     ̂ ∈     ̂  

                                                                   
 (12)  

where Nw( ̂ ) is the set of k neighbors sharing the same label with 

 ̂ . Similarly, the between-similarity graphs is defined as, 

      {
             ̂ ∈   ( ̂ )     ̂ ∈     ̂  

                                                                   
 (13)  

where Sb is the sparse output estimated by Eq. (4) using the column 

vector of  ̂ and Nb( ̂ ) is the set of k neighbors containing the 
neighbors having different labels than  ̂ . We observe that large 

connecting weights are assigned to images resembling high 

similarities (e.g. images from the same person) and vice versa. Fig. 
2 depicts some samples of within- and between-class similarity 
graphs learnt by SR for different scenarios (e.g. changes in view 
angles and clothing conditions). The graphs are represented using 
the “jet” colormap in Matlab which ranges from blue to red. 
Darker/cooler colors indicate lower values while brighter/warmer 
colors represent higher values. For example, the within-class 
similarity graphs shown in the second row of Fig. 2 are mostly 
covered in blue which implies that these graphs are very sparse.  

Having constructed the within- and between-similarity graphs, 
we apply GLPDA to find the projection matrix Y by solving the 
eigenvalue decomposition problem in Eq. (11). Given the gallery 

image set is represented as ZG = YT ̂G where  ̂G is the output of the 

Grassmannian kernel, and ZP = YT ̂P is the probe image set, we use 
k-nearest neighbor to measure the similarity between ZG  and ZP. 

 
Fig. 2. The sparse between- (top) and within- (bottom) class 
similarity graphs learnt by SR for four different scenarios. 
 

There are several benefits of applying SGLPDA on gait data. 
Firstly, SR does not require pre-determined parameters like the 
neighborhood size as compared to the k-nearest neighbor and ε-ball 
method in graph construction. This makes the method easier to use 
in practice. Secondly, we find that adaptive weight assignment is 
more effective than using off-the-shelf function like simple-minded 
graph because learning is performed by locally harvesting the 
intrinsic properties of the images [15]. This is useful to determine 

the appropriate combination of features that can enhance the 
recognition of gait images with different appearances. 

  

4. EXPERIMENTS 

 

4.1. Databases 
The proposed method was tested on the CASIA gait database: 

Dataset B [23] and the OU-ISIR gait database: Dataset A and B 
[24]. The CASIA gait database is good for evaluating the effect of 
view variations on gait as it contains large number of subjects 
taken from different viewing angles. The CASIA gait database 
consists of 124 subjects captured from eleven different angles. The 
viewing angles range from 0o to 180o, separated by an interval of 
18o. There are ten walking sequences for each subject, with six 
samples containing subjects walking under normal condition, two 
samples with subjects walking with coats, and two samples with 

subjects carrying bags. Therefore, there are altogether 13,640 (10 x 
11 x 124) gait sequences in the database. All the images are 
cropped and normalized to 120 x 120 pixels. On the other hand, the 
OU-ISIR gait database is suitable for assessing the influence of 
speed changes and clothing variations on gait. The OU-ISIR gait 
database: Dataset A contains 35 subjects captured from side view 
with speed variation from 2 km/h to 7km/h, at 1 km/h interval. 
There are two walking sequences for each speed level. Thus, there 

are 420 (2 x 6 x 35) gait sequences in this dataset. On the other 
hand, Dataset B is made up of 68 subjects acquired from side view 
with clothing variations. There are many clothing combinations in 
this dataset which include pants, half shirt, rain coat, skirt, and cap. 
All the images for the OU-ISIR database were cropped and resized 
to 128 x 88 pixels. 
 

4.2. Results and Discussions 

4.2.1. Evaluation on View Variations 
The CASIA gait database was used to testify the performance of 
the proposed method under different view changes. For clear 
indication, each of the viewing angles θ = {0o, 18o, …, 180o} were 

labeled as Lview = {1, 2, …, 11}. The eleven angles for each subject 
were modeled as a subspace for that individual. We randomly 
selected four gait sequences from each subject for the gallery set 
and the remaining for the probe set. All the eleven view angles 
were modeled as the subspace for each sample in the gallery and 
probe sets. The experimental results are shown in Table 1. We 
compared our method with [3] and [11]. Besides, we had also used 
simple-minded function to construct the within- and between-
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similarity graph in order to verify the effectiveness of SR. For this 
test, we followed the method in [13] and used binary values 0 and 
1 for Eq. (12) and (13). The rank-1 recognition rate (R1RR) was 
used as the performance indicator. The correct match was counted 
when the sample in the probe set was the best match (top one) from 

the gallery set. When all the viewing angles were used to train the 
system, 100% R1RR could be achieved for all the methods except 
for MSR. This is encouraging as the proposed method is shown to 
possess cross-view capability. However, it is very difficult to get 
all the viewing angles for the subjects in real-life applications. As 
such, we reduced the number of viewing angles in the gallery set to 
simulate the scenario of “missing” cameras. For example, some 
surveillance cameras might not be present at certain positions or 

the cameras could not capture the subjects from certain angles. For 
this test, we took the first few view angles as the gallery set and the 
remaining views as probe set Based on the results in Table 1, we 
notice that the proposed method using CC kernel consistently 
yields good results. The effectiveness of SR has been verified in 
the experiments. The result shows that the proposed method has 
potential to tolerate missing views when there is not enough 
cameras to monitor an area. 

 
Table 1. Evaluating the effect of view angle changes reported using 

rank 1 recognition rate (%). The abbreviations G and P stand for 
gallery and probe sets. SM refers to the simple-minded graph. 

Experiment 
Setting 

MSR 
[11] 

Score 
Fusio
n [3] 

SGLPD
ACC 

Kernel 

SGLPDA 
Proj 

Kernel 

SM CC 
Kernel 
[13]* 

SM Proj 
Kernel 
[13]* 

G: All angles 
P: All angles 

98.79 100 100 100 100 100 

G: 1,2,3,4,5 
P: 6,7,8,9,10 

44.22 2.42 64.51 38.00 62.32 32.39 

G: 1,2,3,4 
P: 7,8,9,10 

26.34 3.63 40.32 22.00 38.31 13.84 

G: 1,2,3 
P: 8,9,10 

22.31 7.66 33.46 15.70 33.25 14.51 

 

4.2.2. Evaluation on Clothing and Carrying Conditions 
We conducted another experiment to assess the performance of the 

proposed method for clothing and carrying variations. The main 
purpose of this experiment is to simulate the condition in which 
suspects captured by the surveillance cameras are trying to 
masquerade themselves by wearing covers like rain coat or hat. 
This experiment is also useful to identify the ability of the 
proposed method to discriminate individuals who wear loose 
outfits like baggy pants and skirt (for ladies) which can obstruct the 
gait pattern from being observed properly. The CASIA and OU-

ISIR gait databases were used for this evaluation. For the CASIA 
database, we took four normal gait sequences as the gallery set and 
two bags-carrying and two coats-wearing sequences as the probe 
sets. All the eleven viewing angles were applied in the test. As for 
the OU-ISIR database, six different clothing combinations were 
tested. Most of the clothing combinations were from types A (e.g. 
regular pants and parka) to M (e.g. baggy pants and down jacket) 
[24]. The clothes types were chosen such that we could get the 

largest possible variations for the test. Only 16 subjects were tested 
in this experiment because we could only identify 16 
corresponding pairs between Dataset A, the normal walking 
sequence, and Dataset B, walking with clothing variations. Six 
sequences from Dataset A were used as the gallery set while the 
six sequences in Dataset B were used as the probe set. The results 
of the tests are shown in Fig. 3. We find that the variations in 

clothing alter an individual’s appearance and make the problem of 
gait identification challenging. Nevertheless, the proposed method 
yield reasonable result and SR exhibits better performance over the 
other methods in this difficult identification task. Overall, the 
experimental result suggests that further investigation has to be 
carried out to study gait recognition with substantial clothing 
variation. 

 

4.2.3. Evaluation on Walking Speeds 
We have also conducted experiments to assess the effect of 
walking speed on gait. We are interested in this study as the 
suspect usually walks faster in order to leave the crime scene 
immediately. The OU-ISIR gait database was used for this 
evaluation. Using similar treatment as the view angles evaluation, 
we labeled the speed S = {2 km/h, 3 km/h, …, 7 km/h} as Lspeed = 
{1, 2, …, 6}.The results are shown in Table 2.  Unlike clothing 
variations, speed changes do not drastically affect the accuracy of 

gait identification. Therefore, the method can tolerate speed 
variations quite robustly. 
 

Table 2. Evaluating the effect of varying walking speeds. 

Experiment 
Setting 

MSR 
[11] 

Score 
Fusion 

[3] 

SGLPD
A CC 
Kernel 

SGLPD
A Proj 
Kernel 

SM CC 
Kernel 

[13] 

SM Proj 
Kernel 

[13] 

G: All speeds 
P: All speeds 

100 97.06 100 100 97.06 94.11 

G: 1,3,5 
P: 2,4,6 

69.11 92.65 94.11 50.00 92.88 47.06 

G: 1,3 
P: 2,4 

66.17 88.24 94.11 25.00 91.18 17.65 

 

5. CONCLUSION 
This paper presents a robust gait recognition method using 

SGLPDA. To the best of our knowledge, the application of SR on 
Grassmannian manifold has not been fully explored. We are the 
first to formulate the gait identification task using SR on the 
Grassmannian manifold. Experiment results suggest that the 
proposed method has potential for practical application as it 
demonstrates view- and speed-invariant capabilities. 
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