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ABSTRACT

In this work, we focus on the problem of partially occlud-
ed face recognition. Using a robust estimator, we detect and
trim the contaminated pixels from query sample. The corre-
sponding pixels in the training samples are trimmed as well.
The linear regression is applied to the trimmed images. Fi-
nally, the query image is labeled to the class with minimum
normalized reconstruction error. Extensive experiments on
benchmark face datasets demonstrate that the proposed ap-
proach is much more robust than state-of-the-art methods in
dealing with occluded faces.

Index Terms— Biometrics, disguise, face recognition,
partial occlusion, robust linear regression.

1. INTRODUCTION

Face recognition, as a very widely used application, has been
received attention from numerous researchers around the
world. In the last few decades, many methods [1, 2, 3, 4, 5]
are proposed for building a reliable face recognition system.
Current frameworks can well handle the face captured under-
controlled environment. However, lots of work still need to
be done before it reaches a certain level of maturity in the un-
controlled condition. Occlusion, generated by disguise (e.g.
scarf, sunglasses, and hair) or blocked by other objects, is a
very common and difficult problem in the real world for face
recognition.

As the face is occluded, popular holistic algorithms, such
as Eigenfaces [6] and Fisherfaces [7], can not be applied as
the extracted features are contaminated. Wright et al. [8] try
to model the occlusion by the sparse combination of columns
of the identity matrix. However, the approach in [8] breaks
down for large occlusion. Alternative approaches are based
on the local feature. Face image is divided into several local
patches and each patch is processed independently [9, 10].
The final decision is based on fusing the classification results
of all patches. In [8], the sparse representation coding (SRC)
is applied to each patch and majority voting is employed for
making decision. The work in [11] handles each part by lin-
ear regression classification (LRC) and classifies query face

by labeling it to the subject with the minimum representa-
tion error in all patches. However, single patch has limited
discriminative power. Recently, to tackle the occlusion prob-
lem of holistic approach and insufficient information of lo-
cal approach, Lai and Jiang [12] advance both the global and
modular algorithms by a combination of the both. As the oc-
cluded part may partially covers many patches for a fixed pre-
partition of the patches, its performance crucially depends on
how to partition the images.

In LRC [11], authors cast face recognition as a class spe-
cific linear regression problem. The least square (LS) is used
to estimate the regression coefficients. LRC works well for
clean images. However, as the imposing of outliers, the with-
in class variation is enlarged, while the between class varia-
tion is reduced. Moveover, the LS is very sensitive to outlier-
s [13]. Therefore, the performance of LRC decreases sharply
as the face contaminated by outliers. To address the instability
of LRC with outliers, the robust linear regression classifica-
tion (RLRC) [14] is proposed to replace the LS with Huber’s
M-estimator [13]. Compared with the LS, the Huber’s M-
estimator weighs the large residuals more lightly. As a result,
the outliers have less significant affection on the estimated co-
efficients. Although RLRC attenuates the problem of outliers
in some degree, it is still unreliable under the large occlusion
which is a common scenario (e.g, about 40% of face is oc-
cluded for a man wearing scarf).

As the test sample is occluded, the assumption of faces
from the same class lying on a linear subspace is violated.
However, if we trim the outliers from the test and the corre-
sponding training samples, the mechanism still can work. In
this paper, we propose a method, named trimmed linear re-
gression classification (TLRC), for face recognition with par-
tial occlusion. Outliers are detected and trimmed based on the
residuals of least trimmed square (LTS) [15]. Then, the LS is
applied to the trimmed samples. The query image is labeled
to the class with minimum normalized reconstruction error.

2. TRIMMED LINEAR REGRESSION
CLASSIFICATION

Given a set of training images from c different subjects. Each
subject contains ni training samples, i = 1, 2, . . . , c. Let
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Ai = [ai1, a
i
2, . . . , a

i
ni
] ∈ R

m×ni , where the column vector
aij represents the jth training image of the ith subject.

If a query image y ∈ R
m belongs to the ith class, it can be

predicted as a linear combination of the training images from
the same class, i.e.

ŷ = Aiβi. (1)

where βi is the regression coefficients. Since real data are
noisy, it may not be possible to reconstruct the test image ex-
actly. The query image can be explicitly modeled as the sum
of ŷ and noise by writing

y = ŷ + e

= Aiβi + e (2)

where e ∈ R
m is an error term following the Gaussian dis-

tribution with zero mean and σ standard deviation. LRC per-
forms well under this ideal case.

2.1. Detection of Outliers

Unfortunately, when query image is with occlusion, the above
model is violated. It is impossible to fit all pixels well. What
could be expected is that the majority of image can be rep-
resented accurately. For this purpose, since the location of
the outliers is unknown, LS is not applicable. In this work,
we choose the least trimmed squares (LTS) [15] as the robust
estimator. As the proportion of occlusion is uncertain, we as-
sume that at most half of the image is occluded, which is also
the highest breakdown point that can be achieved by all robust
estimators [13]. Therefore, the robust regression coefficients
is estimated as

βi
lts = argmin

β

m/2∑

j=1

(e2)j:m, s.t. e = y −Aiβ (3)

where (e2)1:m ≤ (e2)2:m ≤ . . . ≤ (e2)m:m are the squared
residuals in ascending order. (3) minimizes sum of the
squares of the smallest half residuals instead of all. If the
outliers exist, LTS will achieve a much more robust result
than LS. Meanwhile, LTS will generate a close estimate as
LS when the data is clean.

As the faces of some subjects are similar, there could
be more than 50% pixels of images from different subjects
matching well. In this case, the result of trimming half pixels
is unreliable. Therefore, contrary to directly using the result
of (3), we trim pixels as few as possible by the following pro-
cedures.

After generating βi
lts, we reconstruct the test sample as

yi
lts = Aiβi

lts. (4)

The error term between y and yi
lts is

eilts = y − yi
lts. (5)

eilts is an estimate of e in (2), whose real median is zero.
Therefore, the median absolute deviation (MAD) from the re-
al median is derived as

mad(eilts[s
i
0]) = median(|eilts[s

i
0]− 0|)

= median(|eilts[s
i
0]|) (6)

here median(·) denotes the median function and si0 is the set
including indices of all pixels, that is si0 = {1, 2, . . . ,m}.

The robust estimate of standard deviation is derived
by [16]

σ̂0 = mad(eilts[s
i
0])/0.6745. (7)

For the Gaussian distribution, the probability of a sample be-
yond the range from −2σ to 2σ is only 2.28%. As the esti-
mated σ̂0 is larger than the real σ, there are more than 97.72%
clean pixels with residuals residing in −2σ̂0 to 2σ̂0. Any sam-
ple with residual lying outside this range is very likely con-
taminated. Therefore, we trim these pixels from the test image
and update the indices set si as

si1 = {k| − 2σ̂0 ≤ eilts[k] ≤ 2σ̂0}. (8)

However, as the outliers exist, the estimated σ̂0 tends to be
larger than the real σ. Therefore, there are still some indices
of outliers in si1 set. To address this problem, we recalculate
σ̂1 by replacing si0 with si1 in (6) and (7). The new σ̂1 is
employed to trim the pixels in (8). This procedure (6)-(8) is
repeated until si is convergent, that is sit+1 = sit.

2.2. Trimmed Least Squares

The convergent result of (8) is denoted as si and the s̄i =
{1, . . . ,m}\si. The number of elements in si is indicat-
ed by li. ỹi and ãij are obtained by trimming the pixel-
s corresponding to s̄i from y and aij , respectively. The
trimmed training matrix of the ith class is generated as
Ãi = [ãi1, ã

i
2, , . . . , ã

i
ni
]. We consider to represent the ỹi

as a linear combination of the columns of Ãi, i.e.

ỹi = Ãiβi. (9)

As ỹi is produced by trimming outliers, βi can be estimated
by the LS estimator:

β̂i = (ÃiT Ãi)−1ÃiT ỹi. (10)

The predicted response vector for the ith class is represented
as

ŷi = Ãiβ̂i. (11)

2.3. Classification Procedure

The distance between reconstructed image ŷi and ỹi is cal-
culated for each class. The most common metric to measure
the distance between two vectors is l2-norm (i.e. Euclidean
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distance). However, the l2-norm is not robust to measure
the similarity. It amplifies the large components and reduces
the small ones. Even for two very similar vectors except a
few elements with large differences, they will be far away by
measuring in l2-norm metric. As discussed in [17, 18], the
l1-norm metric (i.e. Manhattan distance) is more preferable
than the l2-norm metric in high dimension data application.
Therefore, in this work, l1-norm is used to measure the dis-
tance between ỹi and ŷi. Since the number of trimmed pixels
is different for various classes, a normalizer is needed. As a
natural choice is li, the average pixel distance is obtained by

d̂(y, i) = ||ỹi − ŷi||1/l
i. (12)

In case that two classes are with the same d̂(y, i), the one
with more pixels is more likely to be correct. Therefore, to
encourage the subject with larger li, the normalized distance
between ỹi and ŷi is calculated as

d(y, i) = d̂(y, i)/ log li. (13)

The class label of test sample y is given by

i⋆ = argmin
i

d(y, i) for 1 ≤ i ≤ c. (14)

Algorithm 1: Trimmed Linear Regression Classifica-
tion (TLRC)

Input: Matrixes of training sample set A1,A2, . . . ,Ac

for c classes and Ai ∈ R
m×ni . A query image

y ∈ R
m.

1 for each subject i do
2 Solve the LTS problem as (3).
3 Compute the difference between the query image

and the reconstructed image as (4), (5) and
initialize si0 = {1, 2, . . . ,m}.

4 repeat
5 Estimate the robust standard deviation as (6)

and (7).
6 Update the sit+1 as (8).
7 until sit+1 = sit;
8 Trim the occluded pixels from both test and

training images as ỹi = y[si] and Ãi = Ai[si, :]
9 Compute the regression coefficients based on the

trimmed samples as (10).
10 Compute the normalized reconstruction error

d(y, i) as (11), (12) and (13).
11 end

Output: identify(y) = argmini d(y, i).

3. EXPERIMENTS

In this section, the proposed method is evaluated on the
same databases as in [8]: Extended Yale B [19] and AR

(a) (b) (c) (d)

Fig. 1. Estimate of Outliers for faces with disguise. (a) A test
face with scarf. (b) The estimated outliers (denoted by black
pixels) by the correct subject. (c) A test face with sunglasses.
(d) The estimated outliers by the correct subject.

database [20]. In the experiments, we compare the proposed
TLRC with the related methods: nearest neighborhood (NN),
SRC appended with an identity matrix [8], modular SR-
C (MSRC) [8], LRC [11], modular LRC (MLRC) [11], and
RLRC [14]. Here, we employ the NN to provide a standard
baseline for comparison.

3.1. AR Database

The AR database consists of over 4,000 frontal-face images
from 126 subjects. For each individual, 26 pictures were tak-
en in two separate sessions. The same as in [8], 50 male sub-
jects and 50 female subjects are selected.

In this experiment, we use 799 images (about 8 per sub-
ject) of unoccluded frontal views under varying facial expres-
sion as training samples with image size of 42 × 30. Two
disguised test sets with 200 images for each are evaluated. In
the first test set, images of the subjects wearing sunglasses are
selected. The second disguise set contains faces with scarves.
Fig. 1(a) and (c) show the examples of query images.

Table 1. Face Recognition Rate on the AR Database.
Scenarios Sunglass Scarf

NN 42.5% 7.0%
SRC[8] 87.0% 59.5%
MSRC[8] 97.5% 93.5%
LRC[11] 65.5% 12.5%
MLRC[11] 93.5% 73.5%
RLRC[14] 47.5% 9.5%
TLRC 100% 94.5%

Fig. 1(b) and (d) give the estimates of outliers by the cor-
rect subject for faces with scarf and sunglasses, respectively.
They show that the estimated outliers are very accurate.
Although RLRC employs a robust estimator (Huber’s M-
estimator) to obtain the regression coefficients, it performs
even worse than LRC because of using a non-robust measure-
ment (l2-norm) for classification for this dataset. Table 1 lists
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(a) (b) (c) (d) (e) (f)

Fig. 2. Query images under varying level of contiguous occlusion from 0% to 50%.

Table 2. Face Recognition Rate on the Random Block Occluded Extended Yale B Database.
Occluded 0% 10% 20% 30% 40% 50%

NN 74.7% 78.9% 74.5% 67.3% 56.5% 39.3%
SRC 100% 100% 99.8% 98.5% 90.03% 65.3%
MSRC 98.5% 96.9% 93.6% 86.8% 76.5% 51.4%
LRC 100% 99.6% 93.0% 88.2% 60.4% 43.5%
MLRC 99.6% 99.3% 99.1% 98.0% 95.0% 80.7%
RLRC 100% 98.2% 79.8% 63.7% 49.7% 40.0%
TLRC 100% 100% 100% 100% 99.3% 98.2%

the recognition performances in conjunction with the two
disguised variations. For face occluded by sunglasses, our
method correctly classifies all subjects. It is 2.5% better than
the second best result. On faces covered by scarves, none of
the other global algorithms achieves higher than 60%. Al-
though MSRC obtains a competitive result with the proposed
method, it is much more time-consuming.

3.2. Extended Yale B Database

The cropped Extended Yale B database consists of 2,414
frontal-face images of 38 subjects with size 192 × 168, cap-
tured under 64 different lighting conditions. For computa-
tional convenience, the face images are resized to 42 × 30.
As [8], Subsets 1 and 2 (719 images, normal-to-moderate
lighting conditions) are selected for training and Subset 3
(455 images, more extreme lighting conditions) is chosen for
testing. Different levels of contiguous occlusion, from 0% to
50%, are added to the test images by replacing a randomly
located square block of each test image with an unrelated im-
age, as shown in Fig. 2. The location of occlusion is randomly
chosen for each image and is unknown to the classifiers.

Table 2 shows the face recognition rates for different lev-
els of occlusion cross various methods. When no or only 10%
occlusion is added, all methods but NN achieve almost per-
fect results. As the occlusion increases to 20% and 30%, the
recognition accuracies of LRC, MSRC and RLRC are slight-
ly affected because of their sensitiveness to outliers. MLRC,
SRC and TLRC perform much better than others. For the rate
of occlusion increases to 40%, the performances of MLRC, S-
RC, MSRC, LRC and RLRC drop to around 95% , 90% , 75%
, 60% and 50%, respectively. The proposed method is hard-
ly interfered by the occlusion. When half of the query image

is occluded, the recognition rate of other methods deteriorate
drastically. The performance of TLRC is still around 98%. It
confirms that the TLRC is much more robust to handle face
with large occlusion.

4. CONCLUSION

In this paper, we propose a novel robust face recognition al-
gorithm based on the trimmed least square. The contaminat-
ed pixels in query sample are detected and trimmed. Cor-
respondingly, the pixels in training samples are trimmed as
well. The classification is performed on the linear regres-
sion of trimmed samples. Different from the LRC and RLRC,
we eliminate the affection of contaminated pixels from the fi-
nal classification. Our method is evaluated on disguised and
blocked faces. The experimental results clearly and consis-
tently show that the proposed framework is much more robust
than state-of-the-art methods in dealing with severely occlud-
ed faces.
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