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ABSTRACT

Consider a network environment with no central authority in
which each node gains value when transacting with behaving
nodes but risks losing value when transacting with misbehav-
ing nodes. One recently proposed mechanism for curbing the
harm by misbehaving nodes is that of an introduction-based
reputation protocol [1]: transactions are permitted only be-
tween two nodes who consent to being connected through
introduction via a third node. This paper models the main
decision process in this protocol, namely that of continu-
ing/closing an active connection, as a sequential detection
problem in which each stage corresponds to a transaction that
is (perhaps erroneously) classified as either benign or harm-
ful. It is shown that the optimal decision takes the form of a
reputation threshold policy, the exact threshold determined by
a Bellman equation that admits a tractable iterative solution.

Index Terms— Reputation Systems, Trust, Ratings, Se-
quential Detection, Dynamic Programming

1. INTRODUCTION

A growing portion of daily Internet commerce incentivises
parties involved in any particular transaction to rate one an-
other, so that ratings of a given party in previous transac-
tions can be leveraged to decide whether or not to transact
with that party in the future. Well-known examples include
the feedback forum on the auction website “Ebay,” the user-
based moderation system on the discussion forum “Slashdot”
and the partly crowdsourced website rating tool within the
browser plug-in “Web-of-Trust.” While these systems may
aggregate ratings and transform them into reputations differ-
ently [2], they share an intent to use the reputation-based sig-
naling of trustworthiness for discouraging interactions with
parties that repeatedly misbehave and, in the long run, have a
positive effect on quality-of-service for the behaving parties.

In peer-to-peer networks for which a central reputation
authority becomes infeasible, a recently proposed scheme
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Fig. 1. Sequence Diagram of a Successful Introduction

(described in [1] for secure Internet packet routing) is a so-
called introduction-based approach. Fundamental to such
an approach is that transactions are allowed only between
two parties that are connected, where both parties consent to
the connection through an introduction sequence involving
a third party. In other words, as illustrated in Fig. 1, there
are three parties, or nodes, involved in every introduction se-
quence: the requester is the node who initiates the sequence,
the target is the node to which the requester wishes to be
introduced and the introducer is the node connected to both
requester and target who is asked to make the introduction.
The introducer may or may not offer the introduction (based
on its reputations of requester and target) and the target may
or may not accept the introduction (based on its reputation
of the introducer), but if offered and accepted then the con-
nection between requester and target is established and the
two nodes can transact and/or request introductions to others.
The connection exists indefinitely until the requester or target
elects to close it, and each provides feedback to the introducer
over the lifetime of the connection. Note that, depending on
the state of all nodes’ connections, forming a new connection
may require multiple consecutive introductions; moreover, it
is also assumed that the network initializes with every node
having at least one a-priori connection in place.

The described introduction-based protocol assumes a con-
structive interplay among several different decision processes
within the different roles e.g., whether a requester or target
closes a connection, whether a target accepts an offered in-
troduction, whether an introducer offers a requested introduc-
tion, how feedback is generated by requester/target as well
as interpreted by the introducer. These decisions for each
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node are prescribed by its so-called policy, which for the ex-
periments in [1] was selected somewhat ad-hoc i.e., a set of
heuristic rules with parameters tuned via a time-consuming
simulation-based search. This paper presents an initial step
towards a more model-based optimization approach to policy
selection. Specifically, it is shown (Section 2) that the optimal
continue vs. close decision within any established connection
is given by a variant of the Sequential-Probability-Ratio-Test
(SPRT) solution to the famous Wald problem [3]. A sum-
mary of related work (Section 3) and ideas for future work
(Section 4) close the paper.

2. PROBLEM FORMULATION AND MAIN RESULTS

The model considered in this paper is from the perspective of
one node over the lifetime of a connection to another node i.e.,
in the sequence diagram of Fig. 1, it focuses on the decision
process by either introducee (requester or target) starting from
when the connection is established to when it is closed. The
implementation of this decision process in [1] is illustrated in
Fig. 2. For each incoming transaction, an (imperfect) detec-
tor reports a “yes” or a “no” to the question of whether that
transaction is a harmful attack and, in turn, the reputation is
decremented or incremented, respectively. The updated repu-
tation is then compared to a threshold to answer the question
of whether the remote node is misbehaving, closing or con-
tinuing the connection if the answer is “yes” or “no,” respec-
tively. Mathematically, upon receiving the nth binary-valued
report zn for n = 1, 2, . . ., the real-valued reputation Rn is
updated according to a recursion

Rn = Rn−1 + ρ(zn) (1)

with initial reputation R0 determined when establishing the
connection and

ρ(zn) =

{

RINC , if zn reports a benign transaction
RDEC , if zn reports a harmful transaction

,

(2)
feeding the associated continue vs. close decision according
to a threshold policy

µ(Rn) =

{

continue , if Rn ≥ RTHR

close , if Rn < RTHR
. (3)

Subject to design are the (real) values for parameters RINC,
RDEC and RTHR, referred to as the policy’s increment, decre-
ment and threshold, respectively.

The following sections show that the above parameteriza-
tion of the continue vs. close policy is provably optimal when
(i) the total utility of the connection is the expected net-sum-
reward of all transactions over the lifetime of that connection
and (ii) the detector’s error probabilities are independent and
identically distributed across all transactions. The associated
increment and decrement are given in closed form, while the

Fig. 2. The Continue vs. Close Decision Process in [1]

threshold is given as the solution to a specific iterative algo-
rithm. The proof rests upon casting the decision process as a
variant of the well-studied Wald problem [3], also leveraging
results for optimal stopping problems in general [4].

2.1. Main Model

Let a binary random variable X denote the (hidden) state of
the remote node, which is either well-behaved (X = 0) or
mis-behaved (X = 1). The overall probabilistic model makes
the following assumptions:

• A misbehaving node attacks in any particular transac-
tion with probability q (and does not attack with proba-
bility 1− q), independently of the attack sequence over
all previous transactions.

• The detector classifies each transaction as “benign”
(Z = 0) or “harmful” (Z = 1), misclassifying a non-
attack transaction as harmful with false-positive rate
qFP and an attack transaction as benign with a false-
negative rate qFN, independently of the error sequence
over all previous transactions.

Observe that the detector’s overall error probabilities reflect
not just the per-transaction misclassification rates qFP and qFN

but also the misbehaver’s attack rate q i.e.,

P [Z = z|X = x] =














1− qFP , if x = 0 and z = 0
qFP , if x = 0 and z = 1
(1− q)(1− qFP) + qqFN , if x = 1 and z = 0
(1− q)qFP + q(1− qFN) , if x = 1 and z = 1

.

(4)
The utility of the connection is expressed as an expected

total discounted reward with discount factor δ ∈ (0, 1), where
every transaction with a behaving node incurs a positive re-
ward v, while with a mis-behaving node every non-attack
transaction incurs zero reward and every attack transaction
incurs a positive cost c. If the number of transactions were
fixed at some positive integer n, then it is straightforward to
express the utility i.e.,

P [X = 0]U0(n) +P [X = 1]U1(n)
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with

Ux(n) =

{ ∑

n

k=1
δk−1v , if x = 0

−
∑n

k=1
δk−1qc , if x = 1

.

In our formulation, however, the number of transactions N
is itself a random variable with distribution depending upon
the policy. For a fixed policy, however, if we consider any
positive integer n such that P [N = n] is nonzero, then con-
ditioned on the event that N = n the n-stage utility is

U(n) = P [X = 0|N = n]U0(n)+P [X = 1|N = n]U1(n).

In turn, introducing a final expectation with respect to stop-
ping timeN , the overall utility is U =

∑

∞

n=1
P [N = n]U(n)

or, equivalently,

U = P [X = 0]

(

∞
∑

n=1

P [N = n|X = 0]U0(n)

)

+

P [X = 1]

(

∞
∑

n=1

P [N = n|X = 1]U1(n)

)

.

(5)
The first term quantifies the utility when connected to a well-
behaving node, which is maximized by policies that result in
longer stopping times, while the second term quantifies the
utility when connected to a mis-behaving node, which is max-
imized by policies that result in shorter stopping times. Of
course, the heart of the problem is that the true state of the
remote node is never known with certainty but must rather be
inferred from the report sequence of past transactions.

2.2. Summary of Results

The problem formulated in the preceding subsection is simi-
lar to the famous Wald problem [3] in most ways that general
results in the field of stochastic dynamic programming have
been organized i.e., both are infinite-horizon optimal stopping
problems involving a partially-observable two-state system
with bounded cost per stage [4]. One difference is that Wald’s
problem uses an expected total cost criterion without dis-
counting. Another difference is that our single-stage cost of
continuing another transaction also depends on the (hidden)
state of the remote node. Even so, the form of the optimal
policy continues to be the celebrated Sequential-Probability-
Ratio-Test (SPRT) solution first derived by Wald. In an SPRT,
the decision on whether to stop after the nth transaction
amounts to comparing a pair of thresholds to the a-posteriori
state distribution, which is Bernoulli with parameter pn de-
pending on the observed sequence yn = (z1, z2, . . . , zn).
More specifically, initialize probability p0 = P [X = 0] and,
in each period n = 1, 2, . . ., first apply the probabilistic state

recursion

pn ≡ P [X = 0|yn] =















pn−1 (1− qFP)

f (pn, 0)
, if zn = 0

pn−1qFP

f (pn, 1)
, if zn = 1

(6)
with the denominator in each case using (4) via operator

f(p, z) = pP [Z = z|X = 0] + (1− p)P [Z = z|X = 1] ,

and then choose to stop only if probability pn is outside of the
closed interval between the thresholds, classifying the 0-state
if its above the upper threshold and the 1-state if its below
the lower threshold. Our solution is in fact a special case of
Wald’s SPRT: in our setup, the decision to stop and the deci-
sion to classify the 1-state will be seen to be one in the same
(i.e., in our setup, the upper SPRT threshold is always unity).

Definition 1 (Remote Node’s Reputation) Consider a con-
nection in which there have been n = 0, 1, 2, . . . transactions
resulting in the length-n sequence of reports yn = {0, 1}n

described by the sensor model in (4). The reputation Rn is
in one-to-one correspondence with the probabilistic state pn
through the identity

Rn = log

(

pn
1− pn

)

⇐⇒ pn =
exp (Rn)

1 + exp (Rn)
.

Note that as probability pn approaches unity (zero), repu-
tation Rn approaches positive (negative) infinity. In SPRT
terms, reputation is exactly the log-likelihood that the remote
node is behaving based on the history of sensor reports yn.

Lemma 1 (Predicted Sensor Report) Consider a connec-
tion described by the sensor model in (4), assuming that the
current probabilistic state is p. Then, the sensor report to
be generated by the next transaction, if the decision is to
continue for another time period, is described by a Bernoulli
random variable Z with parameter

P [Z = 1; p] = pqFP + (1− p) [(1− q)qFP + q (1− qFN)] .

Proof: Consider any sequence yn in time period n, so we
are assuming that p = P [X = 0|yn] and we need to deter-
mine P [Z = 1; p] = P [Zn+1 = 1|yn]. Using (4),

P [Zn+1 = 1|yn] =
P [Zn+1 = 1, X = 0|yn] +P [Zn+1 = 1, X = 1|yn]

with

P [Zn+1 = 1, X = x|yn] =
P [Zn+1 = 1|X = x]P [X = x|yn]

for each x ∈ {0, 1}. �

2971



Proposition 1 (Continue vs. Close Policy) Given the con-
nection model of Subsection 2.1, with sensor parameters q,
qFP and qFN in (4) as well as utility parameters v, c and δ in
(5), the utility-maximizing continue vs. close policy takes the
form of (1)-(3) with increment

RINC = log

(

1− qFP

(1 − q) (1− qFP) + qqFN

)

,

decrement

RDEC = log

(

qFP

(1− q)qFP + q (1− qFN)

)

,

and threshold

RTHR = log [p∗/(1− p∗)] .

Here, p∗ ∈ (0, 1) denotes the probability threshold implied by
the optimal utility function U∗ : [0, 1] → R governed by the
Bellman equation

U∗(p) = max {0, pv − (1 − p)qc+ δE [U∗ (f(p, Z))]} ,
(7)

where expectation E is taken with respect to the predicted sen-
sor report Z of Lemma 1.

Proof (outline): From Sect. 5.4 in Vol. 1 of [4], the imper-
fect state information problem involving a two-state system
can be reduced to a perfect state information problem involv-
ing the probabilistic state recursion in (6). Like the partially-
observable problem, the reformulated problem is an infinite-
horizon discounted problem with bounded cost per stage, so
from Sect. 1.2 in Vol. 2 of [4] the Bellman equation for all
p ∈ [0, 1] specializes to (7). By arguments analogous to those
for the Wald problem (see Sect. 3.4 in Vol. 2), the optimal
utility function U∗ of this Bellman equation is ensured to be
convex over [0, 1] with boundary conditions U∗(0) = −qc
and U∗(1) = v/(1 − δ). In turn, the reasoning to optimality
of a stationary threshold rule also still holds; see Fig. 3. The
last step is to translate this probabilistic state solution in terms
of reputation via Definition 1. �

ut
ili

ty

probability

p∗

pv − (1− p)qc+ δE [U∗ (f(p, Z))]

0
1

choose close

choose continue
−qc

v/(1− δ)

Fig. 3. The Optimal Utility U∗(p) vs. Behaving Probability p

3. RELATED WORK

The fundamental concepts underlying Internet-based reputa-
tion systems are essentially no different from those underly-
ing the “word-of-mouth” mechanism within human society,
in general, about which much has been written e.g., [2, 5–7].
The lack of a central authority in a reputation system has
also been considered in other work [8] e.g., the eigentrust
scheme proposed in [9] has a fully distributed version, in
which reputations are iteratively communicated. However,
an introduction-based approach explicitly requires that every
node keep its reputations about others nodes private [1] i.e.,
its architecture is not only computationally distributed but it is
informationally decentralized, which makes its analysis both
challenging and interesting. The application of probabilis-
tic models for interpreting trust and reputations is also not
new [10], nor is the application of a utility-based incentive
structure for peer-to-peer networks [11,12], but incorporating
both within a common formulation for reputation systems has
(to our knowledge) not been previously suggested. Finally,
our development of Wald’s SPRT solution for a reputation-
based system is similar to its development in [13] for a net-
work security classification game, but the link between prob-
abilistic state and reputation was not made there.

4. CONCLUSION

A core decision process of a recently proposed introduction-
based reputation protocol [1], aiming to retain the attractive
properties of trust systems but without the assumption of a
centralized reputation server, has been modeled as a sequen-
tial detection problem. It is shown that the connection policy
studied through simulation in that initial proposal is optimal
in form, characterizing the three policy parameters exactly as
a function of the misbehavior model, the sensor model and
the utility model. This characterization alleviates some of the
tax associated with the simulation-based policy optimization
approach employed in [1].

An analogous mathematical characterization of the nu-
merous other decision processes among the different roles
within the protocol would be similarly helpful. These include
decisions by requester or target on whether to accept an of-
fered introduction, decisions by requester or target on how
feedback to the introducer is generated, decisions by intro-
ducer on how feedback from the requester and target is inter-
preted as well as decisions by introducer on whether to offer
a requested introduction. Understanding the interplay of all
of these different processes with the connection policy de-
rived here is an open problem. Also of interest is the impact
of richer adversary models (e.g., on-off misbehaviors), ulti-
mately including strategic misbehaviors by adversaries with
deep knowledge of the reputation protocol as well as the pos-
sibility of collusion among multiple nodes and across roles.
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