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I. ABSTRACT

Variable Bitrate Coding (VBR) has shown to be an
advantageous method of encoding data streams, with
particular application to speech, audio and video streams.
While the primary disadvantage of VBR has long been
considered as the increasing encoding complexity, recent
research into traffic analysis of VBR coded audio streams
has exposed an important privacy vulnerability wherein
an eavesdropper can utilize the observed length of VBR
encoded data packets and determine the contents of the
communication such as spoken words and audio. In this
work, the privacy-utility tradeoff for VBR coding is studied
from a theoretical foundational perspective. Specifically, the
data source is modeled a mixture distribution, wherein the
length of the encoded data packet is varied to maintain a
constant quality (distortion) with respect to the source. Using
Shannon’s equivocation as a measure of data privacy, the
tradeoff between privacy and utility (as measured by delay
and overall bit rate) of VBR is investigated analytically. In
particular, the tradeoffs are expressed as classical information
theoretic rate distortion functions, which shed light into
methods to increase the privacy of VBR encoded data without
compromising on the desired output fidelity.

Keywords: Variable bit rate coding, privacy, markov decision
process, rate distortion

II. INTRODUCTION

Traffic analysis, a technique where eavesdroppers monitor
the transmission of encrypted data packets over a network and
extract information about the communication or communicat-
ing parties using characteristics such as transmission timing,
packet lengths, protocol headers and suchlike, has long been
applied to compromise the privacy of network users. In the past
decade, the use of packet timing and lengths to compromise
user identities and passwords has been demonstrated over
HTTP [1] and SSH protocols [2]. Consequently, anonymous
networks, inspired by the idea of mixing proposed by David
Chaum [3], have been deployed over networks to enable
the protection of user identities and paths of data flow over
networks.

A key requirement in mix based networks is the addition
of random “dummy” bits to the data so that the packet
lengths are identical thus preventing any information retrieval
therefrom. The downside of this requirement is that it negates

any possible utility achievable though variable bit rate coding
(VBR). This raises some important questions: Is it possible
to prevent information retrieval from packet lengths whilst
achieving the desired utility from variable bit rate coding?
Alternatively, what is the loss in utility of VBR necessary to
achieve a desired degree of privacy? More generally, is there a
tradeoff between privacy and utility in the context of variable
bit rate coding? In this work, we address this question from a
theoretical standpoint.

Variable bit rate coding is extensively used in the encoding
of media streams. Modern media encoding standards such as
MP3, AAC and WMA for audio, and MPEG2, XVid, Theora,
H264 for video and CELP for speech employ VBR to enable a
constant quality transmission at minimum overall bit rate [4]–
[6]. The use of packet lengths to extract data from encrypted
VoIP conversations has been studied in [7]–[11]. Researchers
have shown that the packet lengths can be used to determine
the language of a conversation [7], identify the speakers [8]
and also determine presence of known phrases within the call
[9]. The most telling of these investigations, in [10], show that
one can segment a sequence of packet sizes into subsequences
corresponding to individual phonemes, and further segment
the phonetic transcript into word boundaries, consequently
providing a hypothesized transcript of the conversation. The
two critical design decisions that has led to this information
retrieval are the use of VBR codecs for speech coupled with
length preserving stream ciphers for encryption [6], which
together result in a high correlation between content and
packet length.

Our work is focused on studying the privacy achievability
for the class of VBR applications where different source data
are encoded at different bit rates to maintain a constant quality,
a key requirement in effective multimedia transmission. Mod-
elling the input as a stochastic source of symbols, we study a
bit padding based privacy encoder: Here, each source symbol
could be encoded at a higher rate (thus losing utility) to match
another symbol thus creating uncertainty about the transmitted
symbol. In particular, we demonstrate that the optimal solution
can be determined using a classical information theoretic rate-
distortion optimization when the source is memoryless. For a
Markov modelled source, as is common in speech coding, we
provide lower and upper bounds on the maximum achievable
privacy using rate-distortion optimizations. We also propose
an instantaneous privacy measure for stochastic sources, and
show that our method achieves the maximum instantaneous
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privacy for Markov sources as well. The paper is organized
as follows. The mathematical model and the definition of
privacy in the context are described in Section III. The encoder
for memoryless sources and the corresponding maximization
of privacy are provided in Section IV. The extension to
Markov modelled sources, including an alternative measure
for instantaneous privacy, is presented in Section V, followed
by conclusions in Section VI.

III. MATHEMATICAL MODEL

Consider a source alphabet S = {s1, s2, · · · , sS}. Each
si ∈ S corresponds to one class of elementary units in the
media stream. For instance, an si could refer to a phoneme in
a speech transmission. Each class is encoded at a different rate
to maintain constant quality across classes. For each class, we
define a quality-packet length function li : R 7→ Z+, where
li(q) is the number of bits required to encode (and encrypt)
data from class si at quality level q. The actual realization of
the function would depend on the application, and we assume
that the eavesdropper has perfect knowledge of the functions.

Arrival Process: Let X1, · · · , Xn denote the random variables
representing the sequence of classes of source symbols that
arrive to the encoder. We model the sequence of source
symbols as being generated by a stochastic source. In this
work, we consider the special case of a Markov modelled
source, where the class distribution satisfies

Pr{Xn|X1, · · · , Xn−1} = Pr{Xn|Xn−1∀n}

Let the transition probability matrix of the homogenous
Markov source be denoted by P = {pij}i,j . In other words,
pi,j = Pr{Xn = j|Xn−1 = i}. We consider the transition
matrix to be irreducible and aperiodic and the source to be
stationary.

Encoder: In practice, the job of the encoder is to decide the
type of code used on each arrived source symbol depending
on the quality and privacy requirements. Although, a uniform
quality is desired across all classes of symbols, for privacy
reasons, the encoder would be required to encode a given
symbol using a higher bit rate code than required for the
desired quality. Keeping these in perspective, we model the
encoder as a sequence of mappings from source symbols
to packet lengths. Specifically, an encoder E is specified
as a sequence of functions En : S × Sn−1 7→ Z . Where
ln = En(xn|x1, · · · , xn−1) denotes the length of the nth

packet transmitted by the encoder when the sequence of
symbols belonging to classes x1, · · · , xn respectively arrive.
Note that En could be a random mapping; in other words,
each En can be represented as a collection of deterministic
mappings with an associated probability distribution function.

Privacy: Let N denote the random variable that represents
the number of source symbols in the stream. Correspondingly,
let X1, · · · , XN denote the random variables representing
the sequence of classes of source symbols that arrive to the

encoder. Then, we quantify the privacy of a specific encoder
E using entropy:

P(E) =
E(H(X1, · · · , XN |E(X1, · · · , XN )))

E(N)

where the expectation is over the arrival process and the length
of the stream. The metric as defined above is bounded in
[0, h(p)] where

h(p) = −
∑

i

pi log pi

is the entropy of the source probability distribution.
It is evident that the existing approach to VBR coding,

where each class of symbols are encoded using the minimum
bit rate required to maintain quality would provide minimum
privacy. Our goal, in this work, is to study the design of en-
coders to maximize privacy given a constraint in the overhead.
The type and level of overhead considered would limit the
class of encoders to choose from and consequently determine
the maximum achievable privacy within that class. In this
work, we consider a bit-padded encoder, where the rate of
coding is increased to create uncertainty amongst symbols
across different classes.

IV. BIT PADDED ENCODER

Since the length of the encoded packet reveals the class
of symbols thus compromising privacy, an obvious approach
to increase privacy is to pad additional bits to each packet
thus creating uncertainty for the eavesdropper. They key
question is: given a constraint on the bit overhead what is the
maximum achievable privacy? In the following exposition, we
demonstrate that the optimal solution can be determined using
a rate distortion optimization.

Let the desired quality of encoding be q. Then, the minimum
length required to encode a symbol from class i is given
by li(q). We assume the encoder does not add delay to the
system, and any encoder should transmit the encoded symbol
as soon as it arrives (assuming negligible processing time).
Since the arrivals are independent, it is sufficient to design a
single encoder E1 that processes a single symbol. Therefore,
the bit overhead for any encoder E would be measured by the
expected number of bits added by the encoder per symbol:

O(E, q) =
∑

i

p(i)E(E1(si)− li(q)). (1)

where the expectation is over the randomness in the encoder
E1. Further, the privacy of a bit-padded encoder, if the sources
are independent, can be expressed as:

Pbit(E) = E(H(X |E1(X)),

where the expectation is over the arrival process and the
randomness in the encoder E1. Note that even if the sources
generate independent symbols, it is possible for an encoder
to have a time varying algorithm thus forcing a dependence
on the eavesdroppers observation across multiple symbols, in
which case, the above definition of privacy would be invalid.
For any encoder with memory, however, it is possible to design

2960



a time invariant encoder with equal or greater privacy by using
the marginal distribution of the encoder, since conditioning
reduces entropy (H(X2|X1) ≤ H(X2)).

Our goal is to determine the maximum privacy subject to a
constraint on the overhead:

P∗
bit(omax) = sup

E:O(E,q)≤omax

Pbit(E).

When the sources are independent, this problem has been
solved in [12]. The solution is described here. Let β = {βij}
be an arbitrary conditional probability distribution over S×S.
Consider a random encoder E

β
1 (si) = lj(q) with probability

βij . Let E1 = {E : E = E
β
1 for some β} denote the subset

of encoders formed by varying the conditional distribution β

across the probability simplex. Define a distortion function:

dij =

{

lj(q)− li(q) li(q) ≤ lj(q)
∞ o.w.

(2)

The optimal encoder within the subset E1 can then be deter-
mined using a rate distortion optimization:

P1
bit(omax, q)

△
= sup

E∈E1,O(E,q)≤omax

Pbit(E)

= sup
βij :

∑
i,j

piβijdij≤omax

H(X |E1(X)) (3)

The result in [12] proves that the optimization within the
subset yields the maximum privacy of a bit padded encoder,
and the result is stated here as is relevant to this work.

Theorem 1: (from [12])

P∗
bit(omax, q) = P1

bit(omax, q)

For a two class source, the optimal tradeoff has a closed
form characterization obtained by solving the rate-distortion
optimization.

Corollary 1: For a two class system, the maximum privacy
is given by:

P∗
bit(omax, q) = (p1p

∗ + p2)h

(

p1p
∗

p1p∗ + p2

)

where h(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy and

p∗ =
omax

l2(q)− l1(q)
.

V. STOCHASTIC SOURCE MODEL

When the source alphabets are not independently dis-
tributed, and instead follow a stochastic model, (3) no longer
provides the optimal solution. Indeed, a stochastic source
model would require consideration of the information gathered
by the eavesdropper over the entire time horizon to decode a
single class. In [12], the authors consider a causal privacy
metric, wherein future arrivals are not used to determine the
present source symbol. In the application considered here,
we do not limit that capability. In such a scenario it can be
shown that the expected privacy per slot can be expressed as
a difference between the prior and posterior entropy of the
expected output:

Pbit(E) = lim
n→∞

E(HX +
∑n

i=1(H(Yi|Y
i−1, Xn)−H(Yi|Y

i−1)))

n

where HX is the entropy rate of the Markov source. The above
privacy function is a non linear yet convex function of the
probabilistic encoding function {qni,j} at step n. Furthermore,
the probabilistic encoding will result in dynamic privacy re-
ward function at each step, and the optimal sequential encoder
can be solved for using a ρ−POMDP as in [13]. In this work,
we provide bounds on the optimal tradeoff that are easily
computable for a Markov source.

In order to determine an upper bound, it is useful to define
a weaker notion of privacy catering to such applications.
This notion of instantaneous privacy appeals to a “causal”
eavesdropper who is only allowed to use past history in
determining the class of an observed source packet, but not
the future arrivals. Accordingly, the definition is as follows:
Instantaneous Privacy: We define instantaneous privacy of
an encoder E as:

IP(E) =

∑N
n=1 E(H(Xn|X1, · · · , Xn−1, E(X1, · · · , Xn))

E(N)

where the expectation is over the arrival process and the length
of the stream.

Under these assumptions, we design an encoder that max-
imizes instantaneous privacy subject to a constraint on the
overhead. The result is a generalization of Theorem 1 by
applying the Markov model to compute the entropy of a
stochastic process and allocating overhead to different under-
lying distributions. Specifically, let pi = [pi,1 pi,2 · · · pi,S ]
denote the ith row of the transition probability matrix P

for the Markov source. The following theorem characterizes
the maximum achievable instantaneous privacy for a Markov
Source.

Theorem 2: Let P∗
bit(omax, q,p) denote the maximum

achievable privacy for a source distributed i.i.d according to p

and maximum allowable overhead omax. Then, for a Markov
source with transition probability matrix P, the maximum
achievable instantaneous privacy by a bit padded encoder is
given by:

IP∗
bit(omax, q) =

S
∑

i=1

πiP
∗
bit(o

∗
i , q,pi),

where π = {π1, · · · , πS} is the stationary distribution of the
Markov source and {o∗1, · · · , o

∗
S} is the unique positive vector

that satisfies
∑

i πioi = omax and:

∂P∗
bit(o

∗
i , q,pi)

∂oi
=

∂P∗
bit(o

∗
j , q,pi)

∂oj
∀i, j

Proof: Since we consider the Markov chain to be stationary,
and the forward decision of any encoder is necessarily
causal, we can argue that Xn − E(X1, · · · , Xn), Xn−1 −
X1, · · · , Xn−2 form a Markov string. In other words,
Pr{Xn|E(X1, · · · , Xn), Xn−1, X1, · · · , Xn−1} =
Pr{Xn|E(X1, · · · , Xn), Xn−1}.
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Using the argument identical to that in the proof of Theorem
1, were the encoder to consider classes of arrivals prior to
Xn−1 in determining the length of the Xn packet, then the
observation would reveal more information about past arrivals
without affecting the overhead, thereby reducing privacy at no
reduction in overhead. It is therefore sufficient for an encoder
to determine the length of a packet as a function of Xn and
Xn−1. The instantaneous privacy can then be rewritten as:

PI(E) =

∑N

n=1 E(H(Xn|Xn−1, E2(Xn−1, Xn)

E(N)

which when applying the stationarity of the source reduces to:

PI(E) =

S
∑

i=1

πiH(Xn|Xn−1 = i, E2(Xn−1 = i,Xn))

The remainder of the proof involves allocating the
overhead to each underlying entropy maximization
H(Xn|Xn−1 = i, E2(Xn−1 = i,Xn)) such that the
overall privacy is maximized. Since the distortion constraint
is linear, the resulting optimal allocation reduces to equating
the partial derivatives of the corresponding rate distortion
functions. Details of the proof are omitted in this submission
due to paucity of space. 2

Bounds on Maximum Privacy While instantaneous privacy
captures a specific kind of application where information has
an expiration time, the approach outlined previously can be
used to provide bounds for the general definition of privacy
in Section III. Specifically, since the instantaneous privacy
represents a particular kind of adversary who does not utilize
future observations to determine the class of a particular source
packet, the maximum instantaneous privacy provides an upper
bound on the maximum achievable (general) privacy. A lower
bound can be similarly obtained by empowering the adversary
to have perfect knowledge of future arrivals in determin-
ing the class of a particular source packet. Specifically, let
p′(i, j, k) = Pr{Xn = j|Xn−1 = i,Xn+1 = k} denote the
two-sided transition probability and p′

i,k = {p′(i, ·, k)} denote
the probability mass function for a source arrival conditioned
on a past and future observation. Correspondingly, a stationary
distribution exists, for a pair of past and future observations;
let π′

i,k = Pr{Xn−1 = i,Xn+1 = k} denote that stationary
probability.

Theorem 3: Let P∗(omax, q,p) denote the maximum
achievable privacy for an underlying i.i.d source distributed
according to p and maximum allowable overhead omax. Then,
for a Markov source with transition probability matrix P, the
maximum achievable privacy P∗

bit(omax, q,P) is bounded as
∑

i,j

π′
i,jP

∗
bit(o

∗
i,k, q,p

′
i,k) ≤ P∗

bit(omax, q) ≤
∑

i

πiP
∗(o∗i , q,pi).

Proof: Extension of the proof of Theorem 2. 2.
Note that the bounds are not tight, and the optimal privacy

for a given overhead constraint remains an open problem. In
particular, the difficulty in solving the problem lies in the
ability of the adversary to obtain information from future

observations, which at the time of transmission is not available
to the encoder. In general, the problem can be modelled as
a Partially Observable Markov Decision Process (PoMDP);
however, in contrast to the classical PoMDP model, the reward
is not linear in the probability of the system state. The problem
is also similar to the causal source coding problem, which also
remains open for the scenario when instantaneous decoding is
not necessary [14].

For a two class source, the bounds on the general privacy
can be characterized in closed-form, given by the following
corollary:

Corollary 2: For a two class source with transition proba-

bility matrix P =

[

1− α α

β 1− β

]

, the maximum privacy

can be bounded as:

Plb(omax, q,P) ≤ P∗
bit(omax, q,P) ≤ Pub(omax, q,P)

where γ = omax
α+β
β

and

=
β

α+ β

[

γ(1− α)2 + αβ
]

· h

(

γ(1− α)2

γ(1− α)2 + αβ

)

+
β

α+ β
[γα(1 − α) + α(1− β)] · h

(

γα(1− α)

γα(1− α) + α(1 − β)

)

+
α

α+ β
[γβ(1− α) + β(1− β)] · h

(

γβ(1− α)

γβ(1− α) + β(1 − β)

)

+
α

α+ β

[

γβα+ (1− β)2
]

· h

(

γβα

γβα+ (1− β)2

)

(4)

Pub(omax, q) =
β

α+ β
[γ(1− α) + α] · h

(

γ(1− α)

γ(1− α) + α

)

+
α

α+ β
[γβ + (1 − β)] · h

(

γβ

γβ + (1 − β)

)

(5)

VI. CONCLUSIONS

In this work, we studied a privacy problem in Variable
Bit Rate coding wherein the length of the packet provides
information about an underlying parameter that generates the
data in each packet. Using an entropy-based definition of
privacy, we demonstrated a method of increasing the privacy
by padding bits at the cost of higher rate. In particular, we
demonstrated that the tradeoff is expressible using classical
rate-distortion functions.
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