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ABSTRACT
We show that Slepian’s Variant I permutation codes implement first-
order perfect steganography (i.e., histogram-preserving steganogra-
phy). We give theoretical expressions for the embedding distortion,
embedding rate and embedding efficiency of permutation codes in
steganography, which demonstrate that these codes conform to prior
analyses of the properties of capacity-achieving perfect stegosystems
with a passive warden. We also propose a modification of adaptive
arithmetic coding that near optimally implements permutation cod-
ing with a low complexity, confirming all our theoretical predictions.
Finally we discuss how to control the embedding distortion. Permu-
tation coding turns out to be akin to Sallee’s model-based steganog-
raphy, and to supersede both this method and LSB matching.

Index Terms— Permutation coding, histogram preservation,
arithmetic coding, model-based steganography, LSB matching

1. INTRODUCTION

First-order perfect steganography (histogram-preserving steganog-
raphy) aims at empirically adhering to Cachin’s criterion for unde-
tectability [1]. It is a synonym with perfect steganography when the
host elements are statistically independent. Although this assump-
tion does not hold for real signals, a decorrelating energy-preserving
invertible transform can always be applied before an optimum
method that assumes statistical independence between symbols, as
is usually done in the dual problem of lossless source coding (cf.
Huffman coding). The integer KLT [2] seems a suitable choice.
Here we study optimum first-order perfect steganography with a
passive warden (i.e. no attack distortions), by delving deeper into its
inextricable relationship with Slepian’s permutation codes [3].

Notation and framework. Boldface lowercase Roman letters
are column vectors. 1 and 0 are the all-ones vector and the null
vector, respectively. (·)t is the transpose operator. The 2-norm of u
is ‖u‖ =

√
utu. Capital Greek letters are matrices; tr Π is the trace

of Π. Calligraphic letters are sets; |X | is the cardinality of X . The
indicator function is defined as 1{A} = 1 if event A is true, and zero
otherwise. Logarithms are base 2 throughout the paper, unless noted
otherwise. Uppercase Roman letters are random variables; E{X},
Var{X} and H(X) are the expectation, variance and entropy of X .

A host sequence is denoted by the discrete-valued n-vector x =
[x1, x2, . . . , xn]t ∈ Vn where V = {v1, v2, . . . , vq} ⊂ Z. We as-
sume that x 6= v1, and also that v = [v1, v2, . . . , vq]

t gives the
elements of V in increasing order, that is, v1 < v2 < · · · < vq .
The histogram of x is a vector h = [h1, h2, . . . , hq]

t such that
hk =

∑n
i=1 1{vk=xi}; then n = ht1. Let Sn be the group of all

permutations of {1, 2, . . . , n}. We denote a permutation σ ∈ Sn by
means of a vector σ = [σ1, σ2, . . . , σn]t where σi ∈ {1, 2, . . . , n}
and σi 6= σj for all i 6= j. This vector can be used in turn to define a
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permutation matrix Πσ with entries (Πσ)i,j = 1{σi=j}. The rear-
rangement of x using σ is the vector y = Πσ x, for which yi = xσi
for i = 1, 2, . . . , n. A special case is the rearrangement of x in
nondecreasing order. This is obtained by means of a permutation −→σ
yielding−→x = Π−→σ x such that−→x1 ≤ −→x2 ≤ · · · ≤ −→xn. Although−→x
is unique, −→σ may not be so. The rearrangement of x in nonincreas-
ing order is obtained as←−x = J−→x , where J is the exchange matrix
—a special permutation matrix with entries (J)i,j = 1{j=n−i+1}.

2. PERMUTATION CODES AND STEGANOGRAPHY

The fundamental observation in histogram-preserving steganog-
raphy is that any information-carrying vector y that preserves
the histogram of the host x has to be a rearrangement of x.
In other words, it must hold that the watermarked host is of
the form y = Πσ x for some permutation σ ∈ Sn, so that∑n
i=1 1{vk=yi} =

∑n
i=1 1{vk=xi} for all k = 1, 2, · · · , q. If x can

be rearranged into r different vectors y(1),y(2), . . . ,y(r) then there
are r histogram-preserving watermarks given by w(m) = y(m) − x
for m = 1, 2, . . . , r (and hence at most r different messages); here-
after we will drop the superindex m whenever this is unambiguous
from the context. The number r of rearrangements of x depends
only on h, and is given by the following multinomial coefficient:

r =

(
n

h1, h2, · · · , hq

)
=

n!

h1!h2! · · ·hq!
. (1)

In the remainder we will consider Sx ⊂ Sn to be an arbitrary set of
permutations leading to the r = |Sx| different rearrangements of x.

According to the previous observations, first-order perfectly
steganographic codes are the Variant I permutation codes first de-
scribed by Slepian [3]. Any histogram-preserving steganographic
strategy necessarily uses these codes, or a subset of them. Mittel-
holzer [4] was the first to consider Slepian’s permutation modulation
in steganography. He proved that the mutual information between
the watermarked host and the embedded information is null when
y = x + Πσk, with k a secret vector. However he did not in-
vestigate the histogram-preserving case y = Πσx, that, in part,
mirrors the use of permutation codes in channel/source coding [3, 5]
—i.e. all codewords y are permutations of a base vector x. In
channel/source coding x is a design choice: for instance, in channel
coding under a Gaussian i.i.d. channel, x is chosen to maximise
the minimum pairwise distance between codewords because in this
case minimum distance decoding implements maximum likelihood
decoding [3]. However in steganography x is the host, and, as such,
a fixed input parameter of the encoder. This fact conditions the two
most relevant issues faced by permutation coding in steganography:
encoder complexity —r can be very high, and cannot be fixed— and
embedding distortion control —think of a random rearrangement of
a real signal. In order to address these issues, we first undertake a
theoretical analysis of permutation codes for steganography.
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2.1. Embedding Distortion

Whether x is a real signal or its decorrelation, preserving its empir-
ical distribution as propounded by Cachin’s criterion is clearly not
enough, as we also have to approximately preserve the semantics of
the actual realisation x. Given a codeword y, a convenient way to
measure its semantic closeness to x is by means of the squared Eu-
clidean distance ‖y− x‖2 = ‖w‖2. As ‖y‖ = ‖x‖ with histogram
preservation, this amount can be put as

‖w‖2 = 2 (‖x‖2 − xty) = 2 (‖x‖2 − xtΠσx) (2)

for some σ ∈ Sx. The average watermark power with equally likely
messages ‖w‖2 , (1/r)

∑r
m=1 ‖w

(m)‖2 is therefore

‖w‖2 = 2

(
‖x‖2 − 1

r
xt
(∑

σ∈Sx

Πσ

)
x

)
. (3)

In order to develop (3) we will use the following identity:∑
σ∈Sn

Πσ = (n− 1)!11t. (4)

To prove this result consider the number of n×n permutation matri-
ces which have a one at any given entry. This is equivalent to fixing
the row of the permutation matrix corresponding to that entry, and
therefore there are (n − 1)! possibilities for the remaining n − 1
rows. Since this holds for any entry, equation (4) follows. Now see
that (1/n!)

∑
σ∈Sn Πσx = (1/r)

∑
σ∈Sx Πσx because every dif-

ferent vector in the first sum is repeated
∏q
k=1 hk! times. Combining

this equation with (4) and using xt11tx = (xt1)2, (3) becomes

‖w‖2 = 2

(
‖x‖2 − 1

n
(xt1)2

)
. (5)

It is important to observe that (1/n)‖w‖2 = 2 s2x, where s2x is
the biased sample variance of x. Therefore this result is the deter-
ministic counterpart of the probabilistic analysis of the average em-
bedding distortion of capacity-achieving perfect stegosystems given
by Comesaña and Pérez-González [6, page 17], who showed that
(1/n) E{‖W‖2} = 2 Var{X} for those systems.

It is also desirable to upper bound the maximum power of
a first-order perfectly steganographic watermark, (‖w‖2)max ,
maxm∈{1,2,··· ,r} ‖w(m)‖2. A histogram-preserving scheme may
not use all r codewords, or else it may employ messages with
nonuniform probabilities, and hence its corresponding average wa-
termark power may differ from (5). Furthermore, (‖w‖2)max is the
worst-case scenario for a single histogram-preserving watermark. In
order to obtain this quantity we will use the rearrangement inequal-
ity xtu ≥ −→x t←−u [7, chapter 10], which holds for any two n-vectors
x and u. Setting u = y and observing that y is a rearrangement of
x we have from (2) and the rearrangement inequality that

(‖w‖2)max = 2
(
‖x‖2 −−→x t←−x

)
. (6)

Expressions (5) and (6) must be normalised to be meaningful across
different hosts. The following figures of merit for the embedding
distortion can be put forward: peak document-to-average watermark
power ratio ξ∗ = n(2b − 1)2/‖w‖2 (assuming that the host is
represented with b bits/sample), document-to-average watermark
power ratio ξ , ‖x‖2/‖w‖2 and document-to-worst-case water-
mark power ratio ξmin , ‖x‖2/(‖w‖2)max, which are related as
follows: ξ∗ ≥ ξ ≥ ξmin. From geometrical considerations, it can
also be shown that ξmin ≥ ξ/2. Needless to say, high document-to-
watermark power ratios are required for fidelity purposes.

2.2. Embedding Rate

The steganographic embedding rate associated to a permutation
code is ρ , (1/n) log r bits/host element. Obviously this rate
has to be optimum for first-order perfect steganography, for the
reasons discussed at the start of this section. To see this from
a probabilistic perspective, assume that Stirling’s approximation
loge z! ≈ z loge z − z (for large z) holds for all factorials in (1).
Then the embedding rate can be informally approximated as ρ ≈
−
∑q
k=1

hk
n

log hk
n

bits/host element. If X is a random variable
with probability mass function p , (1/n)h then ρ ≈ H(X).
This approximation was mentioned already by Berger et al. [5] in
the context of permutation coding, and it was first found by Bril-
louin [8]. More rigorously, r is the cardinality of the type p of the
host (because all histogram-preserving codewords y must have the
same empirical distribution as x) and then ρ ≤ H(X) [9]. These
probabilistic interpretations of ρ coincide with the findings about
the achievable rate of perfect stegosystems arrived at by Sallee [10],
considering lossless source coding, and by Comesaña and Pérez-
González [6], departing from Gel’fand and Pinskers’ formula.

2.3. Embedding Efficiency

The embedding efficiency (ε) of a steganographic method is the aver-
age number of message bits embedded per host element change [11].
In order to undertake its computation we define an auxiliary q × n
matrix Λ whose entries are (Λ)k,i = 1{vk=xi}, and we let Ω ,
ΛtΛ. Now, tr ΛΠσΛt = tr ΩΠσ is the number of elements in
y = Πσx unchanged with respect to x. Hence, embedding the mes-
sage associated to codeword y requires n − tr ΩΠσ host element
changes. To start with we will compute the average degree of host
change, which is defined as ν , (1/r)

∑
σ∈Sx(n − tr ΩΠσ)/n

when all messages are equally likely. To evaluate this expression
observe that (1/n!)

∑
σ∈Sn tr ΩΠσ = (1/r)

∑
σ∈Sx tr ΩΠσ , be-

cause tr ΩΠσ is constant across all permutations σ ∈ Sn leading to
the same rearrangement of x. As the trace operator is linear, using
again equation (4) and tr Ω11t = 1tΩ1 = ‖Λ1‖2 = ‖h‖2, it is
straightforward to see that

ν = 1− ‖h‖
2

n2
= 1− ‖p‖2. (7)

Notice that ν, which only depends on the norm of the type of x and
is bounded as 0 < ν ≤ 1 − 1/q, may be seen as an embedding
distortion measure alternative to the figures of merit at the end of
Section 2.1. We are now ready to address the computation of ε.
The embedding efficiency for the message encoded by y = Πσx
is log r/(n − tr ΩΠσ) bits/host element change. This amount is
infinite for σ′ ∈ Sx such that Πσ′x = x, which is why we adopt
the criterion of taking the embedding efficiency to be zero in this
case. Therefore, for equally likely messages, the average embedding
efficiency is defined as ε , (1/r)

∑
σ∈Sx\σ′ log r/(n − tr ΩΠσ).

A useful lower bound on ε can be found by observing that it involves
the harmonic mean of r− 1 positive values, which is upper bounded
by their arithmetic mean [7]. Then

ε ≥ εl , nρ

(
r − 1

r

) 1

r − 1

∑
σ∈Sx\σ′

(n− tr ΩΠσ)

−1

.

(8)
Since the sum over σ ∈ Sx\σ′ in (8) is equal to the same sum over
σ ∈ Sx, using the definition of ν we have that

εl =
ρ
(
r−1
r

)2
ν

bits/host element change. (9)
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The approximation (r − 1)/r ≈ 1 is frequently needed to evalu-
ate (9). In this case ε ' ρ, and ε ' 2 using inequality (19) from [12]

3. PRACTICAL ISSUES

Next, we discuss the two fundamental issues that arise in the practi-
cal implementation of permutation codes for steganography.

3.1. Near-Optimal Embedding Algorithm

Even for moderate n, the exponentially growing number of permuta-
tions precludes the implementation of a lookup table mapping mes-
sages to rearrangements of x. However a low-complexity embed-
ding algorithm can be devised by making the following observa-
tion: if there are r sequences with the same histogram h (for the
same bins v) then all of them can be uniquely represented with
nH(X) ≈ log r bits by means of optimum lossless source coding.
Then optimum lossless source decoding of all different (log r)-bits
long messages should deliver all rearrangements of x (if informed
by its statistics). Therefore first-order perfect steganography is dual
of optimum lossless source coding, where embedding and decod-
ing amount to decompression and compression, respectively. Sallee
previously made this point for ε-secure steganography [10].

Arithmetic coding, being a near-optimal lossless source coding
algorithm [13], can thus be used to implement permutation cod-
ing provided that a special adaptation procedure is used. In stan-
dard adaptive arithmetic coding one assumes an initial count of one
for all symbols; after a symbol is encoded/decoded its count is in-
creased. Here we assume that the initial symbol counts are the
histogram values; after a symbol is encoded/decoded its count is
decreased. Moreover we allow zero counts. In order to illustrate
our adaptation strategy, assume that we wish to compress x. Let-
ting I(0) ← [0, 1) and h(0) ← h, the i-th stage of our version of
adaptive arithmetic coding (for i = 1, 2, · · · , n) consists of dividing
I(i−1) into nonoverlapping right-open subintervals whose lengths
are in proportion to the length of I(i−1) according to the nonzero
elements of h(i−1)/(1th(i−1)). The subinterval for h(i−1)

k > 0 is
labelled as “vk”, and the one whose label vl is equal to xi is de-
clared to be the new interval I(i). The adaptation step consists of
letting h(i−1)

l ← h
(i−1)
l − 1 and declaring h(i) ← h(i−1). Sim-

ply put, the contiguous most significant fractional bits shared by the
binary representation of the endpoints of the final interval I(n) con-
stitute the compressed binary representation of x. This compressed
representation is roughly nH(X) ≈ log r bits long, and then it can
also be put as the most significant log r fractional bits of the decimal
real value (m′ − 1)/r ∈ [0, 1), for some m′ ∈ {1, 2, · · · , r}. De-
compressing m′ requires doing the same subinterval division; in the
i-th step, the label vl of the subinterval where (m′ − 1)/r lies is the
decoded symbol xi. In practice, finite-precision arithmetic has to be
used to implement adaptive arithmetic coding for arbitrary n.

Now, to obtain the rearrangement y = e(x,m) we simply carry
out adaptive arithmetic decoding of m as described above. Clearly,
the adaptation strategy guarantees that y = Πσx for some σ ∈ Sx.
This procedure can generate 2blog rc ≈ r rearrangements of x; for
this reason, the empirical results obtained with this encoder closely
follow all the theoretical expressions in Section 2. Decoding the
message embedded in y, that is, retrieving m = d(y), entails carry-
ing out adaptive arithmetic encoding of y. Crucially, encoder and de-
coder share h precisely because permutation coding is implemented.
The method may incorporate a symmetric secret key K (that is,
eK(·, ·) and dK(·)) by means of a shared permutation of v. Fi-
nally, closely connected to this implementation of permutation cod-

ing are: 1) Jelinek’s algorithm for Shannon-Fano-Elias coding used
by Berger et al. for permutation coding of sources [5] —however
this algorithm predates finite-precision arithmetic coding; and 2) the
realisation by Howard and Vitter that arithmetic decoding can gen-
erate random variables from any desired distribution [13].

3.2. Embedding Distortion Control (Partitioning)

A permutation code based on x may not directly meet a preestab-
lished constraint on the minimum value of ξ. A low ξ implies that y
is not likely to resemble x. However ξ can be raised by restricting the
codewords to a judiciously chosen subset from the ensemble of all
histogram-preserving codewords as follows: 1) partition x into p dis-
joint subvectors x1,x2, · · · ,xp with lengths n1, n2, · · · , np such
that

∑p
j=1 nj = n; and 2) undertake permutation coding within

each of these subvectors independently, that is, yj = Πσjxj with
σj ∈ Sxj for j = 1, 2, · · · , p. This strategy still preserves the
histogram of x, as trivially y = Πσx for some σ ∈ Sx, but it
decreases the number of embeddable messages. This number is
now r =

∏p
j=1 rj , where rj is the multinomial coefficient asso-

ciated to the histogram hj of subvector xj ; hence the theoretical
embedding rate becomes ρ = (1/n)

∑p
j=1 log rj . The average

and maximum watermark power with partitioning can be shown to
be ‖w‖2 = 2 (‖x‖2 −

∑p
j=1(1/nj)(x

t
j1)2) and (‖w‖2)max =

2 (‖x‖2 −
∑p
j=1
−→xjt←−xj), respectively; ξ∗, ξ, and ξmin follow from

these expressions. Retracing the same steps as in Section 2.3, the av-
erage degree of host change can be seen to be ν =

∑p
j=1(nj/n) νj ,

where νj = 1 − (‖hj‖/nj)2, and a lower bound on ε is again (9)
but using the expressions for r, ρ and ν just given.

If encoder and decoder share a partitioning, then all predic-
tions above can be achieved by using adaptive arithmetic decoding
(encoding) within each subvector independently. Of particular in-
terest are histogram-induced partitionings, in which the subvectors
v1, · · · ,vp, that correspond to h1, · · · ,hp, are pairwise disjoint,
and which, then, can be seen as induced by a partitioning of v. The
obvious choice is that encoder and decoder preagree a partition-
ing. This static partitioning approach is the least desirable, because
its resulting performance will be dependent on x, and not on any
theoretical target; however, we show in Sections 4.1 and 4.2 that
certain static partitionings suffice for permutation coding to outdo
some relevant steganographic techniques. Interestingly, adaptive
(target-driven) partitioning is also implementable by relying on
histogram-induced partitionings: 1) encoder and decoder agree on a
theoretical target, such as a minimum ξ; 2) the encoder chooses the
theoretically optimum histogram-induced partitioning when applied
to x, and uses it to produce y; and 3) the decoder also chooses the
theoretically optimum histogram-induced partitioning when applied
to y (as if it were the host), and uses it to decode the embedded
information from y. If the optimum is unique, both parties will
agree on it through this strategy. This is because the theoretical
analysis crucially yields identical results when the host is either x or
any rearrangement y for any tentative histogram-induced partition-
ing —even if y was not obtained through that tentative partitioning
from x. However optimum adaptive partitioning is a combinatorial
optimisation problem of the generalised assignment class, which are
NP-hard and beyond the scope of this paper: there are Bq possible
histogram-induced partitionings, where Bq is the q-th Bell number,
and, for instance, B256 ∼ 10373. Also, the optimum is not necessar-
ily unique, but both parties can replicate a sequence of optimisation
steps and choose the first suitable partitioning. A suboptimal exam-
ple of such a sequence is partitioning v into partitions formed by
s = dq/pe adjacent bins, for increasingly greater p.
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Fig. 1. Performance of permutation coding using adaptive parti-
tioning. Lines are theoretical predictions and symbols are empirical
results. Host: 512× 512 grayscale Lena (8 bpp), spatial domain.

Fig. 2. 512 × 512 Lena (8 bpp) watermarked in the pixel domain
using permutation coding (ξemp = 41.22 dB, ξ∗emp = 46.88 dB,
ρemp = 1.58 bpp, εemp = 2.37 bits/pixel change, p = 72, s = 3).

4. RESULTS

Figures 1 and 2 show the application of permutation coding using as
the host x an arbitrary vector arrangement of the standard 512×512
grayscale Lena image with b = 8 bits/pixel (bpp), in the spatial do-
main. Note that x is obviously not decorrelated; the sole purpose of
these plots is to illustrate the correctness of the analysis for a prac-
tical implementation of adaptive permutation coding. For each p a
vector y = e(x,m) is generated for a randomm using the histogram
partitioning strategy at the end of Section 3.2 and the encoder in Sec-
tion 3.1; it is verified that y preserves the histogram of x and that the
decoder correctly retrievesm = d(y). The theoretical results are the
ones in Section 3.2. The empirical results are ξemp = ‖x‖2/‖w‖2
(document-to-watermark ratio), ξ∗emp = n(2b − 1)2/‖w‖2 (peak
signal-to-noise ratio, or PSNR), ρemp = (1/n)

∑p
j=1blog rjc bpp

and εemp = nρemp/(
∑n
i=1 1{wi 6=0}) bits/pixel change, where w =

y−x. If rj cannot be computed exactly then log rj is lower bounded
using

√
2πz(z/e)ze(12z+1)−1

< z! <
√

2πz(z/e)ze(12z)
−1

[14],
which is essential for the arithmetic decoder to work unambigu-
ously. Remarkably, although the empirical results in Figure 1 rep-
resent single watermarks (i.e., they are not averages), they still ac-
curately match the predictions involving averages. For ξ and ξ∗ this
stems from Chebyshev’s inequality, which can be shown to yield
Pr{|‖W‖2 − ‖w‖2| ≥ δ‖w‖2} ≤ 1/(δ2(n − 1)) assuming uni-
formly random permutations. Also, as discussed, ξmin ≥ ξ − 3 dB.

4.1. Comparison with LSB Matching (±1 Steganography)

A static histogram partitioning grouping pairs of values from v
which solely differ in their least significant bit (LSB) suffices for
permutation coding (PC) to approximate the performance of Sharp’s
LSB matching (±1S) [15] which, however, is detectable using first-
order statistics only [16]. A comparison for several 512 × 512 un-
compressed images in the spatial domain is given below. D(p‖py)
is the relative entropy between p and the empirical distribution of y.

ρemp (ρ) εemp (εl) ξ∗emp (ξ∗
l

) [dB] D(p‖py)

PC ±1S PC ±1S PC ±1S PC ±1S
barb 0.99 (0.99) 1 1.99 (1.99) 2.01 51.15 (51.15) 51.15 0 7.0×10−4

boat 0.99 (0.99) 1 1.99 (1.99) 2.00 51.17 (51.18) 51.14 0 7.4×10−3

goldhill 0.99 (0.99) 1 1.99 (1.99) 2.00 51.14 (51.14) 51.15 0 1.6×10−3

lena 0.99 (0.99) 1 1.99 (1.99) 1.99 51.14 (51.15) 51.14 0 5.7×10−4

mandrill 0.99 (0.99) 1 1.99 (1.99) 2.00 51.15 (51.14) 51.13 0 5.8×10−4

4.2. Comparison with Model-based Steganography

The defining difference between Sallee’s model-based steganogra-
phy (MB) [10] and permutation coding is that the former preserves a
theoretical model of the host in a given domain, whereas the latter is
instead domain-independent and preserves an empirical model. The
nonadaptivity [10] or adaptivity of arithmetic coding is completely
determined in both methods by their modelling approaches. Also,
a probabilistic interpretation of the analysis in Section 2 shows that
it extends and generalises the analysis in [10]. Below, we compare
both methods for several 512× 512 images JPEG-compressed with
a quality factor of 80, using the static histogram partitioning “step
size 2 embedding” from [10]: two adjacent bins per partition. We ap-
ply permutation coding separately to each frequency of the quantized
coefficients in the 8× 8 block DCT (all DC and null AC coefficients
are skipped). D(p‖py) is the average relative entropyD(p‖py) for
the 64 empirical distributions of the frequencies.

ρemp (ρ) εemp (εl) ξ∗emp (ξ∗
l

) [dB] D(p‖py)

PC MB PC MB PC MB PC MB
barb 0.20 (0.20) 0.20 2.03 (2.02) 2.06 36.75 (36.75) 37.04 0 4.7×10−3

boat 0.16 (0.16) 0.16 2.03 (2.03) 2.04 40.45 (40.43) 40.75 0 4.7×10−3

goldhill 0.19 (0.19) 0.20 2.06 (2.05) 2.10 40.59 (40.56) 40.57 0 2.1×10−3

lena 0.13 (0.13) 0.14 2.06 (2.06) 2.11 42.66 (42.67) 42.74 0 3.0×10−3

mandrill 0.32 (0.32) 0.33 2.03 (2.04) 2.07 34.04 (34.06) 34.26 0 4.1×10−3

Permutation coding essentially delivers the same performance while
being simpler and more secure, since it is model-free, domain-
independent and histogram-preserving (model-based steganography
is detectable using first-order statistics only [17]), and more system-
atic and flexible, since a more complete analysis is available and
partitioning can also be adaptive, rather than just static.

5. RELATION TO PRIOR WORK

This research was motivated by our work on information embedding
in protein-coding DNA with codon bias preservation (a special case
of first-order perfect steganography) [18, 19]. The only prior use
of Slepian’s permutation codes [3] in steganography was by Mittel-
holzer [4], but without histogram preservation. Our analysis shows
that these codes comply with the results for capacity-achieving per-
fect stegosystems given by Comesaña and Pérez-González [6]. We
have shown that, in practice, permutation coding supersedes Sharp’s
LSB matching [15] and Sallee’s model-based steganography [10].
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