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ABSTRACT
Currently, the most successful approach to steganography in
empirical objects, such as digital media, is to cast the em-
bedding problem as source coding with a fidelity constraint.
The sender specifies the costs of changing each cover element
and then embeds a given payload by minimizing the total em-
bedding cost. Since efficient practical codes exist that em-
bed near the rate–distortion bound, the remaining task left
to the steganographer is the fidelity measure – the choice of
the costs. In the past, the costs were obtained either in an
ad hoc manner or determined from the effects of embedding
in a chosen feature space. In this paper, we adopt a differ-
ent strategy in which the cover is modeled as a sequence of
independent but not necessarily identically distributed quan-
tized Gaussians and the embedding change probabilities are
derived to minimize the total KL divergence within the chosen
model for a given embedding operation and payload. Despite
the simplicity of the adopted model, the resulting stegosystem
exhibits security that is comparable to current state-of-the-art
methods methods across a wide range of payloads.

Index Terms— Steganography, multivariate Gaussian
cover, additive distortion function, syndrome-trellis codes,
steganalysis

1. INTRODUCTION AND PRIOR ART

Fundamentally, there exist three types of steganographic sys-
tems – steganography by cover synthesis, cover selection, and
cover modification [1]. While the first two are important for
studying theoretical aspects of steganography, only the third
one can be used to embed payloads that are large enough to
make the stegosystem practical.

Steganography by cover modification can be approached
from several different directions. Model-based approaches
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start with adopting a cover model that the embedding algo-
rithm is forced to preserve [2, 3, 4]. Although the resulting
stegosystem is undetectable within the chosen model, such
systems are (sometimes extremely) detectable within alterna-
tive representations of the cover source. A more pragmatic
approach is to admit that one will never construct a perfectly
secure system for empirical objects and design the steganog-
raphy to minimize a distortion function that is related to statis-
tical detectability. Here, right from the beginning the sender
gives up perfect security, and, instead, minimizes the stegano-
graphic Fisher information to maximize the size of the secure
payload that can be embedded at a fixed level of statistical
detectability. This approach has been extraordinarily success-
ful and lead to practical embedding schemes that current best
steganalyzers cannot reliably detect even at rather large pay-
loads [5, 6, 7].

The most common distortion function is additive w.r.t.
cover elements. The designer starts by assigning costs of
changing each cover element (pixel or quantized JPEG DCT
coefficient) and then embeds a given payload with the small-
est possible distortion. This problem can be formulated
as source coding with fidelity constraint [8] for which effi-
cient near-optimal codes exist – the syndrome–trellis codes
(STCs) [9]. Freed from having to invent coding schemes for
every embedding scheme, the stego designer only needs to
specify the pixel costs.

The caveat of this design is, of course, the costs. Ide-
ally, they should be defined to minimize the statistical de-
tectability. However, the relationship between costs and sta-
tistical detectability is currently not clear. Intuitively, the
costs should be high in well-modelable smooth regions and
low in noisy/textured content, where modeling the content
becomes difficult. The cost could be parametrized and then
optimized w.r.t. a specific cover representation and source
(feature space and image database) as in HUGO [5]. Since
such adaptive schemes concentrate the embedding modifica-
tions into smaller regions, one might need to properly model
the interactions between the embedding changes, which in-
evitably leads to non-additive distortion functions and neces-
sitates more complex methods, such as the Gibbs construc-
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tion [10]. Non-additive distortions could be made additive
using the so-called additive approximation or majorized by
a bounding distortion [10], allowing again embedding using
STCs. In [11], the costs were optimized w.r.t. a specific
feature space to minimize the margin between the classes of
cover and stego features. The method constructed in this man-
ner was later shown to be extremely detectable in an appropri-
ately extended (but still low-dimensional) feature space [12].
While applying the same idea with a richer representation of
covers [13, 14] might be ultimately successful, it is unclear
how to scale this approach with increased diversity of the fea-
tures.

In this paper, we approach the problem of designing the
pixel costs in a different manner. In the next three sections,
we start with a simple cover model and embedding opera-
tion and compute the embedding change probabilities to mini-
mize the KL divergence between the cover and stego objects.1

The model is a sequence of independent (but not necessarily
identically distributed) quantized Gaussians. Similar models
are not new and were already used in steganography, e.g.,
in [15]. The non-stationarity of this model can capture the
varying content in images, while the assumption of indepen-
dence permits an especially simple analytical treatment. We
chose the Least Significant Bit Matching (LSBM) as the em-
bedding operation because one can easily derive its stegano-
graphic Fisher information [16, 17]. The method of Lagrange
multipliers is used to derive the optimal embedding change
probabilities for a given payload and image. Curiously, the
embedding profile (cost) now depends on the payload. In
Section 5.2, we test the security of the embedding algorithm,
which we call MG (Multivariate Gaussian), on a database of
images with rich cover models and compare the detectability
with HUGO [5], which, at the time of writing this paper, was
the most secure steganographic algorithm for images repre-
sented in the spatial domain. Despite the simplicity of the
chosen cover model, the MG algorithm offers better security
than HUGO for payloads larger than 0.3 bpp. For smaller pay-
loads, HUGO is slightly more secure. Even though the MG
algorithm does not lead to a major improvement over existing
state of the art, we believe that the methodology introduced
in this paper is significant and further improvement can be
expected with more complex cover models.

2. COVER MODEL

Given a uniform scalar quantizer Q4 with quantization step
4 and range M = {j4|j ∈ Z}, the cover will be mod-
eled as a sequence of n independent random variables, X =
(X1,, . . . , Xn), which are quantized zero-mean Gaussians

Q4(N(0, vi)) with p.m.f.’s p(i) = (p
(i)
j ), j ∈ M.2 In this

1Note that we are not forcing the stego algorithm to preserve the model
but merely to disturb it in the least possible way.

2We note that the results derived in this paper hold under the slightly more
general cover model Xi ∼ Q4(N(µi, vi)) with an integer µi.

article, the integers i ∈ {1, . . . , n} and j ∈ Z will be exclu-
sively used to index pixels and bins in M, respectively. Thus,
below, we refrain from adding the respective ranges of both
indices to declutter the text.

The embedding modifies each pixel independently with
probability βi, changing the cover to a sequence of indepen-
dent random variables (stego object), Y = (Y1,, . . . , Yn),

with distributions q(i)(βi) = (q
(i)
j ), j ∈ M. One can say

that βi is the ith change rate.
With increasing βi, the KL divergence between the cover

and stego objects increases. For small change rates, the KL
divergence is well-approximated with its leading quadratic
term:3

n
∑

i=1

DKL(p
(i)||q(i)(βi)) ≈

n
∑

i=1

1

2
β2
i Ii(0), (1)

where Ii(0) is the steganographic Fisher information (FI)
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3. EMBEDDING: ADAPTIVE LSBM

In this article, we consider LSBM as the embedding opera-
tion. It is used almost solely in all stegosystems designed
for digital images in both raster and transfer-domain formats.
LSBM changes pixel i by ±1 with probabilities β+

i = β−
i =

βi. Under these assumptions, the stego pixel distribution and
its partial derivative become (we drop the pixel index i for
better readability):

qj(β) = (1− 2β)pj + β(pj−1 + pj+1), (3)

∂qj
∂β

∣

∣

∣

∣

β=0

= −2pj + pj+1 + pj−1. (4)

The FI will be computed in the fine quantization limit. Us-
ing

F4(x) ,

x+4/2
ˆ

x−4/2

fv(t)dt (5)

for Gaussian density fv(x) with variance v and zero mean, the
Mean Value Theorem (MVT) gives for the quantized Gaus-
sian cover

pj = F4(j4) = 4fv(j
′4) (6)

for some j′ ∈ (j−1/2, j+1/2). The values pj±1 = F4((j±
1)4) can be obtained using Taylor expansion of F4(x) at
x = j4:

pj±1 =

∞
∑

l=0

F
(l)
4

(j4)
(±4)l

l!
, (7)

3In fact, this approximation is valid also for “large” change rates in the
fine quantization limit (when vi � 4).
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where F
(l)
4

is the lth derivative of F4. After substituting (6)
and (7) in (4), simplifying, and using the MVT, for each l ≥ 1

and x, F (l)
4

(x) = f
(l−1)
v (x + 4/2) − f

(l−1)
v (x − 4/2) =

4f
(l)
v (φl) for some φl ∈ (x−4/2, x+4/2):

∂qj
∂β

∣

∣

∣

∣

β=0

= 43f ′′
v (j4) +O(44). (8)

Finally, the Fisher information

I(0) =
∑

j

1

pj

(

∂qj
∂β
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(
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≈ 44

ˆ
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(
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v (x)

)2

fv(x)
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44

v2
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Eq. (10) was obtained by approximating the “Riemann sum”
in (9) with an integral and evaluating it for Gaussian density
fv.

4. MINIMIZING THE KL DIVERGENCE

In this section, we derive the change rates βi (and thus the
pixel costs) for the payload-limited sender (PLS) that mini-
mizes the KL divergence. The total relative payload that can
be embedded in the image is the sum of entropies of p.m.f.’s
{βi, βi, 1− 2βi},

αn =
n
∑

i=1

h(βi), (11)

where h(x) = −2x lnx − (1 − 2x) ln(1 − 2x) is expressed
in nats. The optimal choice of βi that minimizes the total KL
divergence (1) subject to the payload constraint (11) can be
found using the method of Lagrange multipliers. Differenti-
ating the objective function w.r.t. βi gives:

∂

∂βi

(

n
∑

k=1

1

2
β2
kIk(0)−

1

λ

[

n
∑

k=1

h(βk)− αn

])

= 0, (12)

βiIi(0)−
2

λ
ln

1− 2βi

βi
= 0, (13)

which needs to be solved numerically for each pixel i. Solv-
ing (13) for βi is equivalent to finding x satisfying λIi(0)/2 =
x ln(x − 2), where x = β−1

i ≥ 3 since h(x) is maximized
for x = 1/3. To solve this equation quickly for all pix-
els, the inverse function to y = x ln(x − 2) was tabulated
for y ≤ 103 and an asymptotic iterative solution was imple-
mented for y > 103. From the requirement that the found
βi be minima, the second derivative of the objective function
w.r.t. βi must be positive, which means that λ > 0. For the
PLS, the Lagrange multiplier λ is determined from the pay-
load constraint (11).

Since the probabilities minimizing an additive distortion
function with pixel costs ρi satisfy βi = 1/(1 + exp(λρi))
(see, e.g., [9]), the pixel costs corresponding to embedding
probabilities βi are

ρi = ln(1/βi − 1). (14)

Because the costs are unique up to a multiplicative con-
stant, we normalize them so that maxi ρi = 1. By ordering ρi
from the smallest to the largest, we obtain the so-called cost
profile.

5. EXPERIMENTS

5.1. Cover model estimation and embedding

For a given relative payload α and grayscale image x = {xi},
xi ∈ {0, . . . , 255}, the sender first computes the costs ρi
using (14). Even though pixel values are not realizations
of independent zero-mean Gaussians, the pixels are locally
strongly correlated. Assuming that Xi from a small (e.g.,
3 × 3) neighborhood Ni have the same mean and variance,
the variance vi of Xi can be estimated as

vi = max{1, ENi
[x2

i ]− (ENi
[xi])

2}, (15)

where ENi
is the sample mean over Ni. The maximum with

1 was added for numerical stability.
The actual embedding was simulated at the rate–distortion

bound both for the MG algorithm and HUGO, which we in-
cluded for comparison as the current state-of-the-art algo-
rithm for images in raster format as of November 2012. In
practice, the ternary version of STCs [9] could be used to
implement the actual embedding algorithm near its payload–
distortion bound.4

5.2. Steganalysis

To see how the detectability increases with increased payload,
steganalysis was carried out using supervised machine learn-
ing by building a binary classifier for the class of cover im-
ages and stego images embedded with a fixed relative pay-
load. Images were represented using the state-of-the-art spa-
tial rich model (SRM) [13] with q = 1 with total dimension-
ality 12,753. The machine learning was the ensemble [18] run
with default settings with the Fisher linear discriminant as the
base learner. The cover source was the BOSSbase 1.01 [19]
containing 10,000 grayscale 512× 512 images originally ob-
tained by seven cameras in raw format (DNG, CR2), demo-
saicked, and resized/cropped using a script also available on-
line. The detection performance was evaluated in a standard
manner using the minimal total error under equal prior proba-
bilities of both hypotheses,PE = minPFA

1
2 (PFA+PMD), av-

eraged over ten random splits of the database into two halves.5

4STCs are known to have a small coding loss that diminishes to zero with
increasing constraint height.

5PFA and PMD are the false-alarm and missed-detection rates.
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Fig. 1. Test image (left) and the embedding changes displayed
in white when embedding relative payload 0.4 bpp (right).
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Fig. 2. Cost profiles ρi for image in Fig. 1 for six relative pay-
loads 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 bpp (top curve corresponds
to 0.05 bpp) and sorted embedding change probabilities βi

(top curve corresponds to 0.5 bpp).

In Fig. 1, we show one test image from BOSSbase and the
embedding changes in white for payload 0.4 bpp (bits per
pixel). Like HUGO, the MG algorithm is content-adaptive,
concentrating the embedding changes in edges and textures.
Working out the optimal embedding change probabilities for
different payloads α for this image (Fig. 2), we discover that,
in contrast with embedding schemes that fix the costs, the cost
profile now depends on the payload. This is because we min-
imize the KL divergence in a multivariate Gaussian model
rather than an embedding cost fixed for each pixel in the be-
ginning.

Fig. 3 shows the average detection error PE as a function
of the relative payload for the MG algorithm and for HUGO.
HUGO was run with its parameters γ = σ = 1 and threshold
T = 255. Both algorithms perform similarly for payloads
up to 0.3 bpp. Then, the adaptivity of MG seems better than
that of HUGO. The difference in detectability at α = 1 is
caused by the fact that MG uses ternary embedding and thus
still preserves some adaptability while HUGO at this payload
loses its adaptive character.

6. CONCLUSIONS

Constructing steganographic schemes using additive distor-
tion functions is a modern trend in steganography for digital
media. Since the coding part of the problem has been re-
solved, the most crucial element is the design of the individ-
ual pixel costs. In general, finding a relationship between the
costs and statistical detectability is a very hard problem and
one that will probably remain open for many years to come
because of the complexity of digital media. In this paper, we
adopt a rather simple model – a multivariate quantized Gaus-
sian distribution and derive the pixel costs to minimize the KL
divergence when embedding using least-significant bit match-
ing. In contrast to schemes built by fixing the pixel costs, the
distortion profile for this embedding algorithm depends on the
payload. Despite the simplicity of the cover model, the MG
algorithm exhibits security comparable to the current state-
of-the-art algorithm HUGO. This provides hope that this ap-
proach to minimum-distortion steganography has a promise
and might provide superior performance with more complex
models.

With more complex models, the most problematic issue
seems to be estimation of the local parameters, such as the
covariance matrix for a joint Gaussian model or the transition
probability matrix for a Markov model. Estimating these ob-
jects will inevitably run into the difficulty of having to trade
off between estimator variance and bias.
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Fig. 3. Average detection error PE as a function of relative
payload for MG and HUGO.
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