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ABSTRACT

In this paper, a novel quantization-based information hiding ap-
proach which is invariant to gain attack is presented. For the data
embedding, the host vector signal is  rst divided into two separate
vectors. Then the ratio of the magnitude of the vectors is quantized
according to the watermark data. The decoding scheme is performed
blindly using the euclidean distance. The performance of the pro-
posed method is analytically studied and assessed by simulations
on arti cial signals. The proposed method is applied to various test
images as well. The experimental results con rm the superiority of
the proposed technique against common attacks in comparison with
the recently proposed methods.

Index Terms— quantization-based information hiding, ratio of
the magnitude of vectors, gain attack

1. INTRODUCTION

In the past decade, the quantization-based watermarking has grabbed
the attention of researchers due to its good rate-distortion-robustness
trade-offs. Quantization index modulation (QIM) is one of the most
important methods proposed by Chen and Wornel [1]. In the QIM
method, the watermark data is embedded by quantizing the host sig-
nal features using a set of quantizers, each of which associated with a
different message. Spread-transform dither modulation (ST-DM) [1]
is a quantization based scheme in which the data embedding is per-
formed by quantizing the projection of the host signal vector along
a random direction. Many QIM based methods have been developed
so far. In [2], Kalantari and Ahadi has proposed a logarithmic QIM
(LQIM) which poses a better robustness and perceptual advantages
in comparison with the traditional QIM due to performing a loga-
rithmic transform on the host signal before quantization.

The main drawback of quantization-based methods is their ex-
treme sensitivity to valumetric attacks since this attack that produces
a mismatch between the encoder and the decoder. During the last few
years, many improved techniques have been proposed to deal with
this issue. Among recent methods to alleviate this problem, Ratio-
nal Dither Modulation (RDM) [3] is a simpler and effective one. In
RDM, a division function is used to overcome the gain attack. An-
other approach named Hyperbolic RDM [4] has been proposed to
obtain invariance to both amplitude and power law attacks. RDM
based methods can asymptotically achieve the performance of the
QIM method. The high peak to average power ratio (PAPR) of RDM
is a disadvantage that should be addressed. In [5], Ourque et al.
has introduced a watermarking scheme called angle QIM (AQIM).
AQIM embeds watermark in the angle vector which makes the al-
gorithm robust to amplitude scaling attacks. However, it has been

shown that AQIM has a low robustness against AWGN attack. In [6],
Akhaee et al. has introduced a gain invariant watermarking method
named Sample Projection (SP) in which the watermarking code is
embedded by projecting the line segment obtained from samples of
the host signal on some speci c lines in the 2-D space according
to message bits. It has been shown that this approach outperforms
than the AQIM and Hyperbolic RDM methods. Recently, a ST-DM
based method called Normalized Correlation based Dither Modu-
lation (NC-DM) which is robust against scaling attacks has been
proposed [7]. In this method, the watermark data is embedded by
quantizing the normalized cross correlation between the host signal
vector and a random vector. However, similar to the ST-DM scheme,
the random vector must be sent to the decoder which decreases the
security of the algorithm,since the malicious attacker can change ei-
ther the watermark or the random vector.

In this paper, we introduce a novel gain invariant watermarking
scheme based on quantization. Partitioning the host signal vector
into two separate parts, the data is embedded by quantizing the ratio
of the normalized magnitude of each part. In the decoding process,
the watermark code is extracted using the euclidean distance. The
embedding distortion is  rst derived. Then, the error probability is
analytically calculated. By simulations on arti cial signals, the ana-
lytical derivations are veri ed. Simulation results on image signals
show the superior performance of the proposed method in compari-
son with recent watermarking methods.

2. PROPOSED METHOD

2.1. Watermark Embedding

Let u be the host signal consisting N variables u1, u2, ..., uN . The N
samples of u are divided into two subsequences x and y containing
the even and odd indexed terms, respectively: xi = u2i, yi = u2i−1,
i = 1, ..., N

2
. In order to embed the watermark message m ∈ {0, 1}

in u, the normalized magnitude of x and y are calculated:

sx =

√
√
√
√
√

2

N

N
2∑

i=1

u2
2i, sy =

√
√
√
√
√

2

N

N
2∑

i=1

u2
2i−1 (1)

where sx and sy are the normalized magnitudes of x and y, respec-
tively. Then, the QIM method is applied to the ratio of sx and sy ,
z = sx

sy
, as follows:

zq = Qm(z) = ∆round
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Then, xi and yi are updated as follows:

x′
i =

√
zq
z
xi, y′

i =

√
z

zq
yi (3)

Repositioning x
′ and y

′ in the even and odd positions of u we  nally
obtain the watermarked signal u′.

2.2. Watermark Extraction

At the decoder side, the received signal u′′ is  rst split between two
subsequences x

′′ and y
′′ containing the samples of u′′ in even and

odd positions, respectively. Then, the normalized magnitudes of x′′

and y
′′ are calculated using equation (1). Finally using the ration of

sx′′ and sy′′ , z′′ = sx′′

sy′′
, and the euclidean distance, the watermark

data is extracted as follows:

m̂ = arg min
m∈{1,0}

∣
∣z′′ −Qm(z′′)

∣
∣ (4)

If the watermarked signal is multiplied by a constant gain, , α, due to
the use of division function, it has no effect on the decoding process.
Thus, our algorithm is invariant to scaling attack.

3. ANALYSIS AND PERFORMANCE EVALUATION OF
THE PROPOSED METHOD

Here, we analysis the performance of the proposed method by ob-
taining the embedding distortion and the error probability.

3.1. Signal Modeling

The host signal is assumed to be independent, identically distributed
(i.i.d). Since the low-frequency components of the most natural sig-
nal such as image and audio are modeled with a Gaussian distri-
bution, we assume that the base signal is Gaussian with zero mean
and variance σ. In this section, we will need to calculate the dis-
tribution of the ratio of two normal variables a = N

(
µa, σ

2
a

)
and

b = N
(
µb, σ

2
b

)
. The distribution of c, c = a

b
, for the case of non

zero µa and µb, and σa

µa
≪ 1, σb

µb
≪ 1 can be well approximated

by a Gaussian distribution. The parameters µc and σ2
c of the approx-

imated Gaussian distribution using Taylor series can be derived as
follows:
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where A =
σ2

b

µ2

b

.

3.2. Derivation of Embedding Distortion

In order to obtain the embedding distortion, we need to  nd u′
i −ui.

According to (3), we have:

u′
i − ui =

(√
zq
z

− 1

)

u2i +

(√
z

zq
− 1

)

u2i−1 (6)

Considering the quantization noise to be ε, we have zq = z + ε.
Assuming ∆ to be suf ciently small and using Taylor expansion for
√

zq
z

and
√

z
zq

, we get:

u′
i − ui ≃ ε

2z
u2i − ε

2z
u2i−1 (7)

Here, we neglect higher order terms in Taylor expansion. From
above equation, the embedding distortion E

[
‖u′

i − ui‖2
]

can be
found as:

E
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where three terms inside the expectation are considered to be inde-
pendent. In order to  nd E[ 1

z2
], we need to calculate the distribution

of 1
z2

=
s2y
s2x

. Using Central Limit Theorem (CLT), s2x and s2y can
be modeled with a Gaussian distribution; i.e., s2x ∼ N (σ2, 4σ4/N),
s2y ∼ N (σ2, 4σ4/N). According to the suggested Gaussian distri-
bution in 3.1, E

[
1
z2

]
≃ 1 + 4

N
. When the quantization step-size is

small, the quantization noise ε can be considered to follow uniform
distribution between [−∆/2,∆/2]. Therefore, we have:

E
[
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2

48
(1 +

4

N
) (9)

Also Document to Watermark Ratio (DWR) can be obtained as fol-
lows:

DWR =
E
[
‖u‖2

]

E [‖u′ − u‖2] =
N48

(N + 4)∆2
(10)

As can be seen, DWR is independent of the host signal variance
which leads to a watermark power proportional to the host signal
power.

3.3. Derivation of the Error Probability

We conduct the analysis by considering the watermarked signal to
be sent through Additive White Gaussian Noise (AWGN) channel,
i.e., u′′ = u

′ + n
′. At the receiver, z′′ is calculated as follows:
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where n′
xi

and n′
yi denote the odd and even indexed noise terms.

Since z′′ is not easy to handle, we continue our analysis using z′′2.
Thus, we have:

z′′2 =
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(12)
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small noise terms, z′′2 can be estimated as:
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The  rst term in this equation z2q is the clean term and the second one
nt is the noisy term. Here, error in detection occurs when the noisy
term causes the clean term to fall into a wrong region. In order to
calculate the probability of error, we need to  nd the distribution of
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nt. For this, the distribution of s2x′ , s2y′ , νy′ , and νx′ should be  rst
calculated. Using CLT and the independency of noise and signal,
we have: s2x′ ∼ N (zqσ

2,
z2q4σ

4

N
), s2y′ ∼ N (σ
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The noisy term nt consists of three terms:
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Using the suggested Gaussian distribution in (3.1), the distri-
bution of these three terms can be easily calculated. Because of
the independency of noise and signal, all these three terms are in-
dependent of each other. Therefore, mean and variance of nt are
µnt = µζ1 + µζ2 + µζ3 , σ2

nt
= σ2

ζ1
+ σ2

ζ2
+ σ2

ζ3
.

It is straightforward to show that the probability of error when
minimum distance decoder is used is given as:

Pe =

∞∑

k=1

Pr{t2(k−1)/2 < z2 < t2(k+1)/2}

×
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2
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where tk and vk are de ned as:
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Using the distribution of z2 and nt, (15) can be written as:

Pe =

∞∑

k=1

(

Q

(

t2(k−1)/2 − µz2

σz2

)

−Q

(

t2(k+1)/2 − µz2

σz2

))

×

∞∑

m=−⌊k
2
⌋

(

Q

(

v2(2m+k) − µz′′2

σz′′2

)

−Q

(

v2(2m+k+1) − µz′′2

σz′′2

))

(17)

where Q(α) = 1/
√
2π

∞∫

α

e−u2/2du is the Q-function, µz′′2 =

µnt + z2q , and σz′′2 = σnt . It should be noted that zq in the distri-
bution of z′′ is equal to tk/2.

4. EXPERIMENTAL RESULTS

In this section, we test the performance of the proposed algorithm
and the validity of analytical derivations by simulations on arti cial
signals and real images.

4.1. Simulation on Arti cial Signals

We  rst conduct the experiment by simulation on synthetic signals.
For this, we generate Gaussian i.i.d. data with µ = 0 and σ = 1
to be used as the host signal. Then, data embedding is performed as
described in section 2 and the rate of embedding for all simulations
is 1/32, i.e., one bit in each 32 samples. The results are obtained
by averaging over 100 simulations with 100,000 bits each. Fig. 1
(a) shows the analytical and empirical DWR for different ∆. As can
be seen, the results are matched well which con rms the accuracy
of analysis provided in section 3.2. In order to validate the analyt-
ical analysis for the error probability, data are extracted from the
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Fig. 1. (a) Analytical and empirical DWR for different ∆. (b) Empir-
ical and analytical BER of the proposed method for different WNRs
(DWR=30dB).
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Fig. 2. Comparing the probability of error for the proposed method,
SP, VLQIM, and NC-DM with DWR of 19 dB.

watermarked signal after adding white Gaussian noise with different
variances at the decoder side. DWR is  xed at 30 dB. Fig. 1 (b)
shows the empirical and analytical BER of the proposed method for
various Watermark-to-Noise Ratios (WNRs). As seen, analytical re-
sults are closely matched to the empirical values. As expected, better
improvement is achieved as N increase.

The robustness of our algorithm is also compared with three re-
cently proposed method, SP, vector LQIM (VLQIM), and NC-DM.
The methods are implemented on arti cial signal in similar situa-
tions for DWR of 19 dB. The results are shown in Fig. 2 As we can
see, our approach outperforms SP and NC-DM.

4.2. Simulation on Real Images

To show the performance of the proposed method in the real applica-
tion of image watermarking and compare it with VLQIM, and NC-
DM, we implement all methods in the wavelat transform domain.
For this, a three-level wavelet transform with HAAR  lter is applied
to the host image. Then, the approximation coef cients of the third
level are used for quantization, resulting in embedding of 4096 co-
ef cients in a 512 × 512 host image. Length of host vectors N for
all approaches are set to 32 which results in 128 bits for each image.
For this study, we use ten well-known images of size 512 × 512:
Lenna, Baboon, Couple, Pirate, Barbara, Bridge, Plane, Boat, Pep-
pers, and Goldhill. Parameters of all methods are set in a way that
PSNR for all images is equal to 48 dB. We also use the mean struc-
tural similarity index (MSSIM) [8] which is highly matched with the
human visual system for verifying the imperceptibility of the wa-
termarked images. Table 1 demonstrates the MSSIM of the water-
marked images for all methods. As seen in Table 1, VLQIM achieves
superior performance which is due to applying a logarithmic func-
tion to improve the perceptual quality. Furthermore, the MSSIM of

2947



Table 1. the mean structural similarity index (MSSIM) of the water-
marked images for three methods

Image Methods
VLQIM NC-DM Proposed

Lenna 0.9970 0.9937 0.9959
Baboon 0.9991 0.9980 0.9987
Couple 0.9980 0.9961 0.9974
Pirate 0.9982 0.9961 0.9971

Barbara 0.9984 0.9961 0.9975
Goldhill 0.9983 0.9962 0.9970
Bridge 0.9992 0.9981 0.9987
Peppers 0.9980 0.9951 0.9957
Plane 0.9972 0.9935 0.9956
Boat 0.9983 0.9951 0.9958
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Fig. 3. BER of watermark extraction under AWGN attack for vari-
ous noise variances. The results are averaged over ten well-known
images.

our scheme is higher than NC-DM which shows its better perceptual
advantage. Fig. 3 presents the bit error rate (BER) of watermark ex-
traction for all methods under AWGN attack with different standard
deviations. It is seen that our algorithm outperforms than other meth-
ods. The robustness of all methods is also investigated against JPEG
compression with different quality factors. The results are shown in
Fig. 4. The superiority of the proposed approach over VLQIM and
NC-DM is obvious. Finally, the BER results of all methods under
median and Gaussian lowpass  ltering are obtained and summarized
in Table 2.

5. CONCLUSION

In this paper, a novel quantization watermarking method robust
against valumetric scaling attack was proposed. In this algorithm,
after partitioning into two separate parts, the ratio of the magnitude
of the vectors was quantized for data embedding. Data extraction
was performed blindly using minimum distance decoder. Embed-
ding distortion and the probability of error were analytically derived
and assessed by simulations on arti cial signals. As shown in sim-
ulation results, the performance of the proposed method was better
than VLQIM and NC-DM. Furthermore, as shown, the proposed
method had perceptual advantage over NC-DM.
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Fig. 4. BER Results of extracted watermark under JPEG compres-
sion. The results are averaged over ten well-known images.

Table 2. BER(%) of extracted watermark under Gaussian and Me-
dian  ltering. The window size for Gaussian  lter is 3× 3

Methods Gaussian Filter(σ2) Median Filter
σ2 = 1 σ2 = 1.5 σ2 = 2 3×3 5×5

VLQIM 0.15 0.23 0.31 6.25 19.37
NC-DM 0.00 0.07 0.15 1.48 10.00
Proposed 0.00 0.00 0.00 1.32 8.35
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