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ABSTRACT

We consider the problem of identifying an infection source
based only on an observed set of infected nodes in a network,
assuming that the infection process follows a Susceptible-
Infected-Susceptible (SIS) model. We derive an estimator
based on estimating the most likely infection source associ-
ated with the most likely infection path. Simulation results on
regular trees suggest that our estimator performs consistently
better than the minimum distance centrality based heuristic.

Index Terms— Infection source estimation, SIS model,
security, social networks.

1. INTRODUCTION
We do not have immunity against bacterial diseases like
typhoid fever, Methicillin-resistant Staphylococcus aureus
(MRSA), and tuberculosis. An infected individual can be-
come infected again with the same disease even after recov-
ering from it. The spread of such diseases are often modeled
using a Susceptible-Infected-Susceptible (SIS) model [1, 2].
In a discrete time SIS model, at each time step, the individuals
who have the disease are in infected state, and those individ-
uals who may potentially get infected at the next time step
by currently infected individuals are said to be susceptible.
An infected individual may recover from the disease and get
infected again at subsequent time steps [3]. A computer virus
spreading in a computer network without effective anti-virus
counter-measures can also be modeled using a SIS model as
a computer that has been cleaned of its infection may get
re-infected again [4]. Opinion dynamics in a social network
may also be modeled in some cases using SIS models. A
individual on Twitter [5] may be influenced by the opinion or
posting of someone she is following, thereby becoming “in-
fected” with the same opinion. She can subsequently change
her opinion and become “uninfected” again. In all these ex-
amples, we may want to identify or estimate a subset of nodes
in the network that first started the infection. In the case of a
disease, identification of the infection sources or index cases
aids epidemiological studies, while tracing of the sources of
a computer malware helps to track down the perpetrators.

Existing works related to infection spreading in a network
have primarily focused on the parameters of the diffusion pro-
cess such as the outbreak thresholds and the effect of network
structures [6–9]. Little work has been done on identifying

the infection sources. One of the first works to address the
infection source identification problem is [10], who consider
a Susceptible-Infected (SI) model, where susceptible nodes
may get infected, while infected nodes do not recover. A min-
imum distance centrality (DC) based estimator was proposed
to identify the most likely infection source. Subsequently,
[11, 12] considers the problem of identifying multiple infec-
tion sources under the SI model, while [13] studies the single
infection source identification problem for the Susceptible-
Infected-Recovered (SIR) model, where an infected node may
recover but can never be infected again. A computationally
efficient sample path based estimator was proposed in [13] to
estimate the infection source. However, as alluded to earlier,
the assumption that a recovered node can never be infected
again is false in a lot of practical examples.

In this paper, we study the single infection source estima-
tion problem for an SIS model. We assume that we only ob-
serve one snapshot of the infection spreading process at some
point in time, and derive an estimator that finds the source
node associated with the most likely infection process that
yields the observed snapshot. The estimator we derive is the
same as that in [13], which considers an SIR model, showing
that the proposed estimator is relatively robust to the underly-
ing infection and recovery process of the nodes. This is some-
what surprising as the two models are significantly different.
We also note that the optimality proofs of our estimator differ
significantly from that in [13]. Simulation results suggest that
our estimator performs better than the minimum distance cen-
trality based estimator [10]. Our method can also be viewed
as a data-driven proxy to finding the most “influential” node
in an SIS infection network, in contrast to [4], which deter-
mines the influential nodes based on the expected number of
infected nodes.

The rest of this paper is organized as follows. In Section
2, we present the SIS model and problem formulation. In
Section 3, we describe our source estimator, and present sim-
ulation results in Section 4 to evaluate the performance of the
proposed estimator on regular trees. Finally we conclude and
summarize in Section 5.

2. PROBLEM FORMULATION
Consider an undirected graph G = (V,E), where each node
is either infected or uninfected. If a node is infected, we let
the state of the node be 1, and 0 otherwise. We assume that
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time is divided into discrete time slots, and the state of a node
v in time slot t is given by Xv[t]. At time t = 0, we as-
sume that there is only one infected node s∗ ∈ V , which we
call the infection source. At the beginning of a time slot t,
let the set of all infected nodes and their neighbors be S(t).
We call these the susceptible nodes as they may become in-
fected by the end of time slot t, while those nodes not in
S(t) remains uninfected with probability one. Let q ∈ (0, 1)
be the probability that any node v ∈ S(t) becomes infected
at the end of time slot t, i.e., P(Xv[t + 1] = 1) = q if
v ∈ S(t). We also assume that the susceptible nodes be-
come infected independently of each other. For any set J ,
let XJ [t] = {Xv[t] : v ∈ J} be the collection of the states of
nodes in J , and let XV [0, t] = {Xv[τ ] : 0 ≤ τ ≤ t, v ∈ V }
denote an infection path from time 0 to t.

At some time slot t, we observe the set of all infected
nodes VI , which we assume to be non-empty. We do not as-
sume that we know the elapsed time t. The problem of iden-
tifying the infection source can be formulated as a maximum
likelihood (ML) estimation problem by treating the infection
source s∗ and the elapsed time t as parameters to be estimated.
We want to identify the node ŝML ∈ V and the time t̂ML

that maximizes the likelihood of the observed infection set
VI , given by

(ŝML, t̂ML) = argmax
v∈V

∑

XV [0,t]∈Xv

P(XV [0, t] | s∗ = v),

where Xv is the set of all possible infection paths starting
with v and resulting in VI , and P(XV [0, t] | s∗ = v) is
the likelihood of XV [0, t] given that the infection source is
v. Unlike the infection sources identifying problem for SI
model [10–12], finding the ML estimator for the SIS model is
very challenging as the set of nodes that had been infected be-
fore time t is a superset of the observed VI . This implies that,
unlike the SI model, the most likely infection source may not
be in VI . In the following, we propose an approximation by
finding the source node associated with the most likely infec-
tion path.

3. INFECTION PATH BASED ESTIMATION FOR
TREES

Assume that the underlying network G is an infinite tree. We
propose as the infection source estimate the node associated
with the most likely infection process:

ŝ = argmax
v∈V

max
t∈Tv,XV [0,t]∈Xv

P(XV [0, t] | s∗ = v), (1)

where Tv is the set of all feasible observation times if v is the
infection source. The same estimator has also been used for
the SIR model in [13]. The estimator ŝ in (1) can be found
in two steps. For each v ∈ V as the infection source, we de-
termine the most likely infection path induced by v being the
infection source. Then, we find ŝ as the node that maximizes
the likelihood of the most likely infection path found in the
first step.

3.1. Most likely infection path
We start with two definitions, the first of which is borrowed
from [13].

Definition 1. Let d(v, u) denote the length of the shortest
path between v and u, which is also called the distance be-
tween v and u. Define the largest distance between v and any
infected node to be,

d̄(v, VI) = max
u∈VI

d(v, u).

We call d̄(v, VI) the infection eccentricity of node v. Fur-
thermore, the nodes with minimum infection eccentricity are
defined as Jordan infection centers of VI .

Definition 2. For each v ∈ V and t ∈ Tv , let Xv
V [0, t] ∈ Xv

to be the most likely infection path up to time t, given that v
is the infection source, i.e.,

Xv
V [0, t] = arg max

XV [0,t]∈Xv

P(XV [0, t] | s∗ = v).

For any set J , and 0 ≤ i ≤ j ≤ t, we let Xv,t
J [i, j] be the

states of nodes in J during time slots i to j, in the infection
path Xv

V [0, t].

We use the following notations throughout this paper.

• Given any v ∈ V , let Vv(h) to be the set of nodes h
hops away from v.

• For any tree G and a pair of nodes u, v ∈ G, let
Tu(v;G) be the subtree of G rooted at node u with the
first link in the path from u to v removed.

The following lemma provides an important property, the
proof of which is omitted due to space constraints.

Lemma 1. Suppose that v ∈ V is the infection source. For
an observed set of infected nodes VI , let H be the minimum
connected subgraph of G that contains VI and v. Then, for
any t ∈ Tv , and any u ∈ H\{v}, the first infection time tIu of
u is bounded by

tIu ∈ [d(v, u), t− max
x∈Tu(v;H)

d(u, x)], (2)

Furthermore, in the most likely infection path Xv,t
V [0, t] (Def-

inition 2), the first infection time for u is given by

t̃Iu = t− max
x∈Tu(v;H)

d(u, x). (3)

Lemma 1 shows that to find the most likely infection path
conditioned on v being the infection source, we should choose
the the first infection time for any non-source node to be as
late as possible.

Lemma 2. Given a non-empty set of infected nodes VI , sup-
pose that v is the infection source. Then,
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(1) the set of all feasible observation times is Tv = [d̄(v, VI),∞);

(2) P(Xv
V [0, t]) is monotonically decreasing in t ∈ Tv; and

(3) the most likely elapsed time conditioned on v being the
infection source is given by tv = d̄(v, VI).

Proof. We first prove claim (1). The infection can propagate
at most one hop further from the source node v in one time
slot. If t < d̄(v, VI), the infection can not reach the nodes
Vv(d̄(v, VI)), and therefore, it is not possible for Vv(d̄(v, VI))
to become infected. This proves claim (1).

Next, we show claim (2). Fix a t ∈ Tv . We compare
Xv

V [0, t] with Xv
V [0, t+ 1]. We first show that the source

node v is susceptible at time slot 1 in Xv
V [0, t+ 1], i.e.

v ∈ S(1). This is true because if v /∈ S(1), then v and all
of its neighboring nodes are uninfected at time slot 1, i.e.,
Xv,t+1

Vv(1)
⋃{v}[1] = 0. This implies that the set of infected

nodes VI is empty as v is the only source in the network. This
contradicts our assumption that at least one node is infected.

Since Xv
V [0, t] ∈ Xv , from Lemma 1, we have that

Xv,t+1
V [2, t+ 1] corresponds to Xv,t

V [1, t] and Xv,t+1
Vv(1)

[1] = 0,
so that Xv,t+1

v [1] = 1, yielding

P(Xv
V [0, t+ 1])

P(Xv
V [0, t])

=P(Xv,t+1
v [1] = 1) · P(Xv,t+1

Vv(1)
[1] = 0)·

P(Xv,t+1
V [2, t+ 1]

P(Xv,t
V [1, t])

=q(1− q)|Vv(1)| < 1, (4)

where |Vv(1)| denotes the number of elements in the set
Vv(1), and P(Xv,t+1

V [2, t+ 1]) = P(Xv,t
V [1, t]) because

Xv,t+1
V [1, t+ 1] = Xv,t

V [0, t]. From (4) we can see that
P(Xv

V [0, t]) is monotonically decreasing as t increases, which
proves claim (2). The last claim now follows from claim (2),
and the proof for Lemma 2 is now complete.

3.2. Source associated with the most likely infection path

Proposition 1. Let H be the minimum connected sub-
graph of G that contains VI . Suppose that u and v are
neighboring nodes in H with d̄(v, VI) < d̄(u, VI). Let
l = argmaxx∈VI

d(u, x), then we have

(1) l ∈ Tv(u;H);

(2) tv = d(v, l) = tu − 1.

Proof. Note that tu = d̄(u, VI) = d(u, l) by Lemma 2(3).
If l /∈ Tv(u;H), we have d(v, l) = d(u, l) + 1 = tu + 1.
From Lemma 2(3), we have tv = d̄(v, VI) ≥ d(v, l), so tv ≥
tu + 1, which contradicts the assumption that tv < tu. This
completes the proof of the first claim, which now implies that
d(v, l) = d(u, l)− 1 = tu − 1. From Lemma 2(3), we obtain
tv ≥ d(v, l), so that tu − 1 ≤ tv < tu, which gives us tv =
tu − 1. This completes the proof for the proposition.

Lemma 3. Let H be the minimum connected subgraph of G
that contains VI , and let tv = d̄(v, VI) for any v ∈ H . Then,
for any pair of neighboring nodes u and v in H with tv < tu,
we have

P(Xv
V [0, t

v]) > P(Xu
V [0, t

u]).

Proof. Denote the first infection time of v in the infection
path Xu

V [0, t
u] as tIv . We first show that tIv = 1 in the infection

path Xu
V [0, t

u]. Conditioned on node u being the infection
source, the infection can propagate at most tu− tIv hops away
from node v within the subtree Tv(u;H). From Proposition
1(2), if tIv > 1, we have d(v, l) = tu − 1 > tu − tIV , for
l = argmaxx∈VI

d(u, x). In other words, the infection can
not reach node l, which is a contradiction. Therefore, we must
have tIv = 1 in the infection path Xu

V [0, t
u].

Using the same arguments as in the proof of Lemma 2,
one can show that Xu,tu

V [2, tu] corresponds to Xv,tv

V [1, tv],
with Xu,tu

Vu(1)\{v}[1] = 0 and Xu,tu

u [1] = 0. We then obtain

P(Xu
V [0, t

u])

P(Xv
V [0, t

v])
=
P(Xu,tu

V [2, tu])

P(Xv,tv

V [1, tv])
· P(Xu,tu

v [1] = 1)·

P(Xu,tu

u [1] = 0) · P(Xu,tu

Vu(1)\{v}[1] = 0)

=q(1− q)|Vu(1)| < 1,

where P(Xu,tu

V [2, tu]) = P(Xv,tv

V [1, tv]) because Xu,tu

V [1, tu]

= Xv,tv

V [0, tv]. The proof for Lemma 3 is now complete.

We have the following result based on Lemma 2 and
Lemma 3.

Theorem 1. If VI is an observed infection set in an infinite
tree, the estimator in (1) is given by

ŝ ∈ argmin
v∈V

d̄(v, VI), (5)

i.e., the infection source associated with the most likely infec-
tion path is a Jordan infection center (cf. Definition 1).

Proof. It is easy to see that if G is a tree, then there are at
most two Jordan infection centers for VI . In addition, if there
are indeed two Jordan infection centers, they are neighbor-
ing nodes [13]. With out loss of generality, we assume there
is only one Jordan infection center ŝ. (When there are two
Jordan infection centers, we can treat them as a single virtual
node.) For any node vk ∈ H\{ŝ}, we denote the path from ŝ
to vk as [ŝ, v1, v2, · · · , vk] , where k ≥ 1. We want to show
that

P(X ŝ
V [0, t

ŝ]) > P(Xvk
V [0, tvk ]). (6)

Fix a l ∈ VI such that d(ŝ, l) = d̄(ŝ, VI). Let u denote the
neighboring node of ŝ on the path from ŝ to l. Consider a node
l′, where l′ = argmaxv∈VI\Tu(ŝ;H) d(ŝ, v). We first show
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that d(ŝ, l′) ≥ d(ŝ, l) − 1. This is true because if d(ŝ, l′) ≤
d(ŝ, l)− 2,

d̄(u, VI) = max (d(u, l′), d(u, l))

= max (d(ŝ, l′) + 1, d(ŝ, l)− 1)

= d(ŝ, l)− 1.

In the last line, we have used the inequality that d(ŝ, l′)+1 ≤
d(ŝ, l) − 2 + 1 = d(ŝ, l) − 1. We find a node u that has
infection eccentricity less than that of ŝ, which contradicts
our assumption that ŝ is the Jordan infection center.

Note that l could be either in the subtree Tv1(ŝ;H) or
not, we shall look into these two possible cases. When l /∈
Tv1(ŝ;H), it is easy to see that d̄(vi, VI) = d(ŝ, l) + i for
1 ≤ i ≤ k. When l ∈ Tv1(ŝ;H) and 1 ≤ i ≤ k, we have the
following relationship:

d̄(vi, VI) = max (d(vi, l), d(vi, l
′))

= max (d(vi, l), d(ŝ, l
′) + i)

= d(ŝ, l′) + i.

In the last line, we have used the fact that d(ŝ, l′) + i ≥
d(ŝ, l) − 1 + i > d(vi, l) − 1 + i > d(vi, l). This means
the infection eccentricity is monotonically increasing along
the path from ŝ to vk for both cases. By repeatedly applying
Lemma 3 and Lemma 2(3), we can show (6) is true for both
cases, and the proof for Theorem 1 is now complete.

Theorem 1 shows that the optimal estimator in (1) is given
by a Jordan infection center. Note that this is the same result if
an SIR infection process is assumed [13]. We have therefore
shown that using Jordan infection centers is relatively robust
to the underlying assumptions governing the infection and re-
covery of nodes in the network.

4. SIMULATION RESULTS

In this section, we present simulation results on regular trees
to evaluate the performance of the proposed estimator. An ef-
ficient algorithm has been described in [13] to find the Jordan
infection center, which we call optimal infection path (OIP)
algorithm. We refer the reader to [13] for details of OIP. The
benchmark is the minimum DC based estimator that is proved
in [10] to be the maximum likelihood infection source estima-
tor for regular trees in SI models.

In each simulation run, we let the underlying network G
be a sufficiently large regular tree, so that G can be treated as
an infinite tree. We set the degree of the regular trees to be
2, 3, 4, 5 or 6. For each degree, we perform 1000 simulation
runs. We randomly choose a node as the infection source and
let the infection spread out using the SIS model. The infection
probability q is chosen uniformly from (0, 1). We observe the
infection graph after t time slots, where t is chosen uniformly
from [3, 5]. We run the OIP algorithm and the DC algorithm
on the observed graph for the proposed estimator and the DC
based estimator respectively. Figure 1 shows the detection

rate (percentage of times that the estimator correctly finds the
infection source) of both estimators. We can see that the pro-
posed estimator has higher detection rate than the DC based
estimator for all kinds of regular trees. Error distance is de-
fined as the distance between the estimate and the infection
source. Figure 2 shows the histogram of the error distances
of both estimators for regular trees with degree 4 (similar re-
sults are obtained for other degrees). We see that the proposed
estimator has smaller error distance on average.
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Fig. 1. Detection rate of optimal infection path (OIP) based
estimator and distance centrality (DC) based estimator for
regular trees with various degrees.
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Fig. 2. Histogram of error distances of optimal infection path
(OIP) based estimator and distance centrality (DC) based es-
timator for regular trees with degree 4.

5. CONCLUSION

We have derived an infection source estimator for an SIS
model that identifies the node associated with the most likely
infection path. We showed that the estimator is a Jordan
infection center. Simulation results on regular trees indi-
cate that our estimator outperforms the minimum distance
centrality based estimator, which is proved to be the maxi-
mum likelihood estimator for the SI model. In this paper, we
make the assumption that there is only one infection source
in an infinite tree. However, there may exist multiple infec-
tion sources in practical applications [11, 12]. Future work
includes identifying multiple infection sources for the SIS
model in a general network.
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