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ABSTRACT

This paper considers the problem of optimal distributed detection
with independent identical sensors in the presence of Byzantine at-
tacks. By considering the attacker to be strategic in nature, we ad-
dress the issue of designing the optimal fusion rule and the local
sensor thresholds that minimize the probability of error at the fusion
center (FC). We first consider the problem of finding the optimal fu-
sion rule under the constraint of fixed local sensor thresholds and
fixed Byzantine strategy. Next, we consider the problem of joint op-
timization of the fusion rule and local sensor thresholds for a fixed
Byzantine strategy. Then we extend these results to the scenario
where both the FC and the Byzantine attacker act in a strategic man-
ner to optimize their own utilities. We model the strategic behavior
of the FC and the attacker using game theory and show the existence
of Nash Equilibrium. We also provide numerical results to gain in-
sights into the solution.

Index Terms— Distributed detection, Wireless sensor net-
works, Byzantines, Game theory

1. INTRODUCTION

Distributed detection with multiple sensors is a well studied topic
in detection theory [1]. The design of sensor networks for different
applications has been extensively studied in the past decade. Dif-
ferent sensor network topologies have been considered [2] , but in
this paper we focus on parallel topology. In [3], [4], the authors
considered the design of the optimal fusion rule and local sensor
thresholds by minimizing the probability of error at the fusion center
(FC) for the parallel topology. Recently, the problem of distributed
detection in the presence of Byzantine attacks has attracted atten-
tion [5, 6, 7, 8, 9]. Schemes for Byzantine node identification have
been proposed in [5, 9]. Analysis of optimal Byzantine attacks is
presented in [6, 9, 10]. In [7] and [8], the authors considered the
problem of optimization of the fusion rule for a fixed sensor thresh-
old. However, the problem of designing optimal detection parame-
ters in a holistic manner by considering strategic behavior of the FC
and the Byzantine is still an area of open research.

In contrast to previous works, in this paper, we consider the
problem of designing optimal distributed detection parameters in a
holistic manner in the presence of Byzantines and also model the
strategic behavior of the FC and the Byzantines using game theory.
We analyze the problem under different attacking scenarios and give
insights into the practical scenarios where the proposed schemes are
useful. The main contributions of this paper are as follows.
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1. We consider the problem of joint optimization of the fusion rule
and local sensor threshold for a fixed Byzantine strategy.

2. Then we extend these results to the scenario where both the FC
and the Byzantine attacker act in a strategic manner to optimize
their own utilities and model it using Game Theory.

3. We provide numerical results to gain insights into the solution.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model used in this paper. We
consider a parallel network with N sensor nodes and a fusion center
(FC) trying to detect a phenomenon.

2.1. Distributed detection in sensor networks

Consider a binary hypothesis testing problem with the two hypothe-
ses H0 (signal is absent) and H1 (signal is present). Prior probabil-
ities of the two hypotheses H0 and H1 are denoted by π0 and π1,
respectively.

Each node i makes a one-bit local decision vi ∈ {0, 1} using
the likelihood ratio test

p
(1)
Y i (yi)

p
(0)
Y i (yi)

vi=1

≷
vi=0

λ (1)

where λ is the identical threshold1 used at all the sensors and
p
(k)
Y i (yi) is the conditional probability density function (PDF) of

observation Y i under the hypothesis Hk. After making its one-bit
local decision vi, node i sends ui (which may not be the same as
vi) to the FC. We assume error-free communication channels in this
paper.

We denote the probabilities of detection and false alarm of node
i by Pd = P (vi = 1|H1) and Pfa = P (vi = 1|H0), respec-
tively, which are assumed to be the same for every node irrespective
of whether they are honest or Byzantine nodes. If a node is hon-
est, then it forwards its own decision correctly. However, a Byzan-
tine node, in order to undermine the network performance, may alter
these decisions.

2.2. Byzantine attack model

A Byzantine node, in order to undermine the network performance,
may alter its decision prior to transmission. Each Byzantine decides
to attack independently relying on its own observation and decision
regarding the presence of the phenomenon. We define the following
strategies PH

j,1, PH
j,0 and PB

j,1, PB
j,0 (j ∈ {0, 1}) for the honest and

Byzantine nodes, respectively: Honest nodes:

1It has been shown that the use of identical thresholds is asymptotically
optimal [11].
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PH
1,1 = 1− PH

0,1 = PH(x = 1|y = 1) = 1 (2)

PH
1,0 = 1− PH

0,0 = PH(x = 1|y = 0) = 0 (3)

Byzantine nodes:

PB
1,1 = 1− PB

0,1 = PB(x = 1|y = 1) = 0 (4)

PB
1,0 = 1− PB

0,0 = PB(x = 1|y = 0) = 1 (5)

where P (x = a|y = b) is the probability that a node sends a to the
FC when its actual decision is b. We assume that the FC is not aware
of the exact set of Byzantine nodes and considers each node i to be
Byzantine with a certain probability x.

2.3. Binary Hypothesis Testing at the Fusion Center

We consider a Bayesian detection problem where the performance
criterion at the fusion center is the probability of error. We also as-
sume that the FC employs a K-out-of-N fusion rule. Global false
alarm and detection probabilities are denoted by QF and QD, re-
spectively, as

QF =
N
∑

i=K

(

N
i

)

(π10)
i(1− π10)

N−i (6)

QD =
N
∑

i=K

(

N
i

)

(π11)
i(1− π11)

N−i (7)

where πj0 and πj1 denote the conditional probabilities of ui = j
given H0 and H1, respectively. We can represent π10 and π11 as

π10 = x(1− Pfa) + (1− x)Pfa (8)

π11 = x(1− Pd) + (1− x)Pd (9)

where x denotes the probability that bit ui received at the FC has
been flipped, i = 1, · · · , N . In this paper, we assume that the net-
work is moderately affected by Byzantines and x ≤ 0.5. The prob-
ability of error at the FC is given by

PE = π0QF + π1 (1−QD) (10)

The probability of error PE is a function of parameters (K,λ), which
are under the control of the FC and the parameter (x) which is under
the control of the attacker. This motivates us to design parameters K
and λ given x such that PE is minimized.

2.4. Problem Formulation

In this subsection, we formulate the Bayesian detection problem and
consider the minimization of the probability of error under three dif-
ferent scenarios. First, we consider the problem P1 finding the op-
timal fusion rule (K∗) for a fixed local sensor threshold (λ) and a
fixed Byzantine strategy (x). Next, we consider the problem P2 of
joint optimization of the fusion rule and the local sensor threshold
(K,λ) for a fixed Byzantine strategy. Then we extend this result to
the problem P3 where both the FC and the Byzantine attacker act in
a strategic manner to optimize their own utilities and model it as a
minimax game. The solution to this minimax game between the FC
and the Byzantines is the Nash equilibrium (NE), which is a saddle
point in the design metric, PE . The problems discussed above are
formally stated as follows.

Problem P1: minimize
K

PE(K,λ, x) (11)

Problem P2: minimize
K,λ

PE(K,λ, x) (12)

Problem P3: min
K,λ

max
x

PE(K,λ, x) (13)

In the next section, we present analytical results that allow us to find
the optimal design parameters for the above mentioned formulations.

3. SYSTEM DESIGN IN THE PRESENCE OF BYZANTINES

In this section, we investigate the properties of the probability of er-
ror PE with respect to K,λ and x and use it to solve the optimization
problems (P1), (P2) and (P3).

3.1. Optimal Fusion Rule Design

First, we design the optimal fusion rule assuming that the local sen-
sor threshold λ and the Byzantine strategy (x) are fixed and known
to FC. 2 Notice that the resulting optimal fusion rule and fixed local
sensor threshold pair (K∗, λ) may not be the global minimizer of the
probability of error over all possible (K,λ) pairs since λ is assumed
fixed during the optimization process. However, this scheme is par-
ticularly important in the scenario where the FC wants to avoid the
overhead caused by the diffusion of the new local sensor threshold
messages to all nodes in the network. We present the solution of
Problem P1 in the following theorem based on [1].

Theorem 1 The optimal fusion rule K∗ for fixed local sensor
threshold λ and Byzantine strategy x is given by

K∗ =
ln
[

(π0/π1) {(1− π10)/(1− π11)}
N
]

ln [{π11(1− π10)}/{π10(1− π11)}]
(14)

where x < 0.5. When x = 0.5, FC makes the final decision based
on the prior probabilities.

As aforementioned, this optimal fusion rule and fixed local sensor
threshold pair (K∗, λ) may not be the global minimizer of the prob-
ability of error over all (K,λ) pairs. Thus, we next consider the joint
optimization of the fusion rule and the local sensor threshold.

3.2. Joint Optimization of Fusion Rule and Sensor Threshold

In this section, we present a procedure to find the optimal fusion rule
and local sensor threshold pair (K∗, λ∗) that minimizes the proba-
bility of error PE given a fixed Byzantine strategy x. This scheme is
particularly important in the scenario where Byzantine attackers are
performing a man-in-the-middle attack and do not have access to the
local sensor threshold. We first show that when using the optimal
fusion rule (K∗), PE is a quasi-convex function of the local sensor
threshold (λ) under a certain condition.

Lemma 1 For the optimal K and any fixed x (x < 0.5), PE is a
quasi-convex function of λ, if (d/dλ)

(

λ−1Pd/Pfa

)

≤ 0.3

Proof A function f(λ) is quasi-convex if, for some λ∗, f(λ) is non-
increasing for λ ≤ λ∗ and f(λ) is non-decreasing for λ ≥ λ∗. In
other words, the lemma is proved if dPE/dλ ≤ 0 (or dPE/dλ ≥ 0)
for all λ, or if for some λ∗, dPE/dλ ≤ 0 when λ ≤ λ∗ and
dPE/dλ ≥ 0 when λ ≥ λ∗. Hence, we calculate the partial deriva-
tive of PE with respect to λ. Using the property of ROC’s that

2In practice, x may be learned by observing ui-s at FC for a fixed dura-
tion; however, this study is beyond the scope of this work.

3Various noise distributions satisfy (d/dλ)
(

λ−1Pd/Pfa

)

≤ 0 [12].
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dPd/dPfa = λ, the fact that dπ11/dπ10 = λ, we get

dPE

dλ
= π0

dQF

dλ
− π1

dQD

dλ

= −π1λ (π10)
′ N

(

N − 1
K − 1

)

(π11)
K−1 (1− π11)

N−K

+ π0 (π10)
′ N

(

N − 1
K − 1

)

(π10)
K−1 (1− π10)

N−K

(15)

where, (π10)
′ = dπ10/dλ = (1−2x)[dPfa/dλ] ≤ 0. The inequal-

ity follows from the fact that x ≤ 0.5 and dPfa/dλ ≤ 0. Following
an approach similar to [3], [12], we rewrite the above equation as
follows.

dPE

dλ
= g (λ,K, x)

(

er(λ,K,x) − 1
)

(16)

where

g = N

(

N − 1
K − 1

)

π0(−π10)
′(π10)

K−1(1− π10)
N−K (17)

and

r = ln

(

λπ1

π0

(

π11

π10

)(K−1) (
1− π11

1− π10

)(N−K)
)

(18)

Now it can be seen that g (λ,K, x) ≥ 0. This implies that the
sign of dPE/dλ depends on the value of r (λ,K, x). The proof
is complete if we show that r (λ,K, x) is either always positive or
negative, or there exists a λ∗ such that r (λ,K, x) ≤ 0 for all λ ≤ λ∗

and r (λ,K, x) ≥ 0 for all λ ≥ λ∗. Substituting K = K∗ given
in (14) in equation (18), and dropping K from r (λ,K, x) for ease
of notation we get r(λ, x) = lnλ − ln (π11/π10). Differentiating
r (λ, x) with respect to λ, we get

dr(λ, x)

dλ
=

1

λ
+

1

π11

[

π11

π10
− λ

]

dπ10

dλ
(19)

In the following, we show that r(·) is non-decreasing. Substituting
π11, π10, dπ10/dλ in dr(λ, x)/dλ ≥ 0,

x

1− 2x
+ Pfa +

Pfa + x/(1− 2x)

Pd + x/(1− 2x)

(

−λ2 dPfa

dλ

)

≥ −λ
dPfa

dλ
,

and Pfa/Pd ≤ (Pfa + x/(1− 2x)) / (Pd + x/(1− 2x)) since
Pfa/Pd ≤ 1. Therefore, it suffices to show that

Pfa + λ

(

−λ
dPfa

dλ

)

Pfa

Pd

≥ −λ
dPfa

dλ
. (20)

The inequality above is equivalent to the condition in the lemma.

From (16) it can be seen that if r(K,λ∗, x) = 0 for some λ∗ then
(PE)

′ = 0 at λ∗ and because PE is quasi-convex for the optimal
fusion rule K∗, it is minimized for λ = λ∗. For the optimal fusion
rule K∗, r(K,λ, x) = 0 has a unique positive root and there ex-
ist efficient algorithms, which utilize the quasi-convex nature of the
problem, to find an optimum (K∗, λ∗) pair that minimizes Pe [13].

Until now we have restricted our analysis to the scenarios where
the Byzantine strategy is fixed. Next, we extend the above results to
the case where Byzantine attacker also optimizes its strategy against
the FC, which results in a game theoretic formulation of the problem.

3.3. Minimax Game between the FC and Byzantine Attacker

In this section, we analyze the scenario where both the FC and the
Byzantine attacker act strategically to optimize their own utilities.

This formulation models the case where Byzantine attackers can
compromise and gain full control over the nodes, i.e., the local sen-
sor thresholds. We define a game as follows:
• Players: We have two players– the FC and the Byzantine.
• Strategies: Strategy set of FC , {K, λ}; attacker’s strategy , x.
• Utilities: FC’s utility, uFC , and Byzantine’s utility, uB , are the
same, i.e., probability of error Pe(K,λ, x), which the FC will mini-
mize, and the Byzantine will maximize.

Solution to this game between the FC and the Byzantine is the
Nash equilibrium (K∗, λ∗, x∗), which is a saddle point in the de-
sign metric PE and satisfies the condition in the following definition.

Definition (Nash Equilibrium): A strategy (K∗, λ∗, x∗) is a Nash
Equilibrium for the game if and only if
1. uFC(K

∗, λ∗, x∗) ≤ uFC(K̂, λ̂, x∗),∀K̂ 6= K∗, ∀λ̂ 6= λ∗

2. uB(K∗, λ∗, x∗) ≥ uB(K∗, λ∗, x̂),∀x̂ 6= x∗

Next, we present some analytical results that allow us to find
minimax strategies for this formulation. The proofs are omitted due
to space constraints.

Lemma 2 The probability of error, PE , increases monotonically in
x, the attackers parameter,∀K, if Pd ≥ 0.5 and Pfa ≤ 0.5.

Lemma 2 suggests that if Pd ≥ 0.5 and Pfa ≤ 0.5 then attacker’s
best response will be a pure strategy xmax. An optimum design will
always satisfy the Pd ≥ 0.5 and Pfa ≤ 0.5 bounds when α ≤ 0.5.
Theorem 2 is presented as a solution of Problem 3 (see (13)). The
minimax game is solved numerically (Section 4).

Theorem 2 If conditions mentioned in Lemma 1 and Lemma 2 hold,
then the saddle-point (K∗, λ∗, x∗) exists in the minimax game for-
mulated between the FC and Byzantine attacker such that

min
K,λ

max
x

PE(K,λ, x) = max
x

min
K,λ

PE(K,λ, x)

4. NUMERICAL RESULTS

In this section, we consider the detection of known signals in Gaus-
sian noise (cf. [3]). The sensor observation is y = sy + ny , where
sy = ±1 is the transmitted signal and ny ∼ N (0, 1). We denote
τ = lnλ as the log likelihood ratio threshold. Since τ increases
monotonically with λ, our results hold when λ is replaced by τ . We
consider a parallel topology with odd (N = 11) and even (N = 10)
number of nodes. Pe is analyzed as a function of τ , K and x.

4.1. Optimal Parameter Design

Figure 1(a) shows the numerical results for P1 with N = 11 and
unequal priors (π0 = 0.3, and π1 = 0.7). We fix τ = lnλ = 0 and
optimize the fusion rule K for different fraction of Byzantine nodes
(x). Optimal fusion rule in Figure 1(a) matches our theoretical re-
sult given in (14). For example, when x = 0.4 and τ = 0, we have
π10 = 0.4313 and π11 = 0.5683 from (8) and (9), respectively.
The optimal K∗ given by (14) is K∗ = 4 which agrees with Fig-
ure 1(a). In Figure 1(b), we fix x = 0.4 and jointly optimize fusion
rule K and sensor threshold τ . Comparing Figures 1(a) and 1(b), we
observe that optimizing the fusion rule alone results in Pe = 0.2652
and joint optimization of (K∗, τ∗) results in better Pe = 0.2648.

4.2. Equilibrium Analysis of the Minimax Game

Figure 2 plots the minimum probability of error considering FC’s
best response (joint optimization of K, τ ) versus attacker’s strat-
egy (fraction of Byzantine nodes). Priors are assumed to be equal.
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Fig. 1. Probability of error (Pe) analysis. (a)Pe with varying fusion rule (K). (b) Pe with varying fusion rule (K) and threshold (τ ).
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Fig. 2. Minimum probability of error for different x. Odd number
of nodes are considered (N = 11).

Let xmax denote the maximum fraction of nodes the Byzantine can
compromise. From Figure 2 we can deduce that, in equilibrium,
the Byzantine adopts the pure strategy x = xmax (to maxmin the
FC), and the FC becomes indifferent to the choice of (k, τ ) pairs
that solve minK,τPe(K, τ, xmax) and can arbitrarily mix among
all such (k, τ ) pairs. This is an equilibrium, since, all (k, τ ) pairs
that solve minK,τPe(K, τ, xmax) are optimized against the Byzan-
tine’s strategy x = xmax. Also, the Byzantine can not deviate from
xmax to obtain a higher Pe. Observe that, when xmax < 0.5,
the FC has an unique (k, τ ) pair that is a best response to the at-
tacker’s strategy x = xmax, and thus the strategy of the FC degen-
erates to a pure strategy. Specifically, in this case, the pure strategy
Nash Equilibrium (K∗, τ∗, x∗) in the minimax game is given by
(dN/2e , 0, xmax). However, when xmax = 0.5, any (k, τ ) is a
solution to minK,τ Pe(K, τ, xmax), and thus the FC can arbitrarily
mix among all (k, τ ) pairs in equilibrium.

In Figure 3, we consider an even number of nodes (N = 10)
while plotting the minimum probability of error by considering the
FC’s best response against attacker’s strategy. Priors are again as-
sumed to be equal. As can be seen from the figure, probability of er-
ror Pe is monotonically increasing function of x. Thus, similar to the
case with odd number of nodes, in equilibrium, the Byzantine will
again adopt the pure strategy x = xmax, while the FC can arbitrarily
mix among all (k, τ ) pairs that solve minK,τ Pe(K, τ, xmax).

Interestingly, when xmax < 0.5, the FC has two (k, τ ) pairs4

4In Figure 3, these two (k, τ) pairs are (6,−ε) and (5, ε) with ε =
0.3, 0.3, 0.4, 0.4, 0.2 for x = 0, 0.1, 0.2, 0.3 , 0.4, respectively.
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Fig. 3. Minimum probability of error for different x. Even number
of nodes are considered (N = 10).

that are best responses to the attacker’s strategy x = xmax, which
is in contrast to the scenario with odd number of nodes. Thus, in
equilibrium the FC can mix between the two pairs of (k, τ ) that
minimize Pe when x = xmax < 0.5. Specifically, in this case,
the Nash Equilibrium strategy profile is ((N/2) + 1,−ε, xmax)
and (N/2, ε, xmax), where ε > 0. Similar to the case with odd
number of nodes, when xmax = 0.5, any (k, τ ) is a solution to
minK,τ Pe(K, τ, xmax), and thus the FC can arbitrarily mix among
all (k, τ ) pairs in equilibrium.

5. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of optimal fusion rule and
threshold design in the presence of Byzantine attackers. First, we
considered the problem of finding optimal fusion rule (K∗) under
the constraint of fixed local sensor thresholds (λ) and fixed Byzan-
tine strategy (x). Next, we considered the problem of joint opti-
mization of fusion rule and local sensor threshold (K, λ) for a fixed
Byzantine strategy. Then we extended these results to the scenario
where the FC and the Byzantine act in a strategic manner and mod-
elled it as a minimax game. We numerically analyzed the game,
showing the existence of Nash Equilibrium and also illustrated the
equilibrium strategy profile. In future, we will investigate enhanc-
ing distributed detection performance in the presence of Byzantine
attackers by suitably adding stochastic resonance (SR) noise, while
considering probability of error as a detection performance metric.
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