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ABSTRACT
Recent research has shown that collaborative representation-
based classifier (CRC) can lead to promising results for the
classification of face images. However, CRC is conducted in
the original image space rather than the nonlinear high dimen-
sional feature space in which features belonging to the same
class are better grouped together and thus can be easily sep-
arable. To address this problem, this paper presents a novel
classifier, Kernel Collaborative Representation-based Classi-
fier (KCRC), by incorporating the kernel trick into the frame-
work of CRC. Extensive experiments on both the AT&T and
the FERET face databases demonstrate the priority of KCRC
to CRC and several state-of-the-art methods.

Index Terms— Face recognition, classifier, collaborative
representation, sparse representation, kernel trick.

1. INTRODUCTION

During the last several decades, automatic face recognition
has been extensively studied in computer vision commu-
nities [1]. And it used to be well-acknowledged that a
well-designed feature extractor, such as Principal Compo-
nent Analysis (PCA) [2] or Linear Discriminant Analysis
(LDA) [3], is crucial for a successful face recognition sys-
tem. However, very recently, a debate on the significance
of feature extractor is aroused by the pioneering work of
Wright et al. [4], in which they conclude that what really
matters is not the choice of the feature space but the design
of the classifier and the dimensionality of feature space. This
claim is supported by the surprising experimental results that
even with unorthodox features like downsampled images and
random projections, Sparse Representation-based Classifier
(SRC) can outperform several state-of-the-art face recogni-
tion schemes, e.g., the nearest neighbor classifiers and the
nearest subspace classifiers with carefully selected features.

At the very beginning, researchers believed that it’s the
underlying l1-norm sparsity in face images that improves the
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robustness and accuracy of the classification, which boosts
the research of sparsity-based face classification. Yang et al.
[5] give a comprehensive evaluation of several l1-norm mini-
mization techniques. Wagner et al. [6] designed a real-world
face recognition system based on SRC. Also, several kernel
SRC schemes [7][8][9] have been proposed to address the
nonlinearity of real-world face images. A recent survey of
sparse representation for computer vision and pattern recog-
nition tasks can be found in [10]. Of late, in [11], Shi et
al. argued that the sparsity assumption underpinning much of
the aforementioned work is not supported by the data, which
means SRC cannot be guaranteed to get the desired perfor-
mance. Furthermore, Zhang et al. [12] demonstrated both
theoretically and empirically that it’s not the l1-norm sparsity
constraint but the collaborative representation (CR) that truly
improves the FR performance. Inspired from this, CRC is cast
into a regularized least square problem, which is much more
efficient than SRC without sacrificing the performance.

In this paper, we propose a novel kernel collaborative
representation-based classifier (KCRC) by introducing the
kernel trick, which can better group and separate the data
with intrinsic nonlinear structures, e.g., face images [13].
In KCRC, the data in the input image space are implicitly
mapped into a high or even infinite dimensional kernel fea-
ture space by utilizing some nonlinear mapping associated
with a kernel function. However, it’s not practical for us to
solve the corresponding regularized least square problem in
the feature space since we can only access the feature space
by the kernel functions. To make this optimization problem
feasible, we take advantage of kernel principal component
analysis (KPCA) to conduct dimensionality reduction in the
feature space. Experimental results on both the AT&T and
the FERET databases demonstrate the priority of KCRC to
several state-of-the-art algorithms in terms of both accuracy
and efficiency.

The remainder of this paper is organized as follows. A
brief overview of CRC is given in Section 2. Then in Section
3, we describe the details of the proposed KCRC method, in-
cluding both the objective function, its implementation and
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the relationship to prior work. In Section 4, we use KCRC
for face recognition and list the performance comparisons be-
tween KCRC and CRC on both the AT&T and the FERET
face databases. Section 5 concludes the paper.

2. COLLABORATIVE REPRESENTATION-BASED
CLASSIFIER

For face recognition tasks, we denote the gallery samples as
A = [A1,A2, · · · ,Ac] ∈ Rd×N , in which d = w × h
is the image dimension, c is the number of subjects, Ai =
[ai,1,ai,2, · · · ,ai,ni ] is the collection of the gallery samples
for subject i, and N =

∑c
i=1 ni is the total amount of sam-

ples. In SRC [4], a new test sample y ∈ Rd can be sparsely
coded by the following l1-minimization optimization prob-
lem:

α̂ = argmin
α

||y −Aα||22 + λ ||α||1 , (1)

where λ is a regularized scalar. The decision is made in favor
of the class with minimum reconstruction error:

Identity(y) = argmin
i

||y −Aiδi(α̂)||2 , (2)

where i = 1, ..., c, and δi(α̂) ∈ Rc is a vector whose only
nonzero entries in α̂ are associated with subject i.

Wright et al. [4] attributed that the success of SRC to the
l1-norm which ensures that the resultant coding coefficients
αs are sparse. In contrast, the authors of [12] argued both the-
oretically and empirically that collaborative representation-
based classification (CRC) is crucial and regularizing α using
l2 norm can result in similar performance. The coding model
of CRC can be expressed by:

α̂ = argmin
α

||y −Aα||22 + λ ||α||22 . (3)

The decision of CRC is ruled as follows:

Identity(y) = argmin
i
{||y −Aiδi(α̂)||2 / ||δi(α̂)||2}.

(4)
Although the l1-norm minimization problem is exten-

sively studied and lots of fast numerical algorithms have been
proposed, it is still very computationally demanding. Com-
pared with the l1-norm regularized SRC, the l2-norm regu-
larized CRC is significantly more computationally efficient
without sacrificing the face recognition accuracy. Extensive
experimental results in [12] demonstrate that CRC is up to
1600 times faster than SRC with similar recognition rate.

3. PROPOSED METHOD

3.1. The Kernel Trick

In machine learning field, the kernel trick is a well-known
technique which can generalize a linear algorithm to its non-
linear counterpart without ever having to compute the map-
ping explicitly. The motivation is that after such nonlinear

mapping, the samples in the high dimensional feature space
can better group together and thus can be easily separable.
The kernel trick has been successfully applied to several al-
gorithms, such as SVM [14], KPCA and KLDA [13].

The trick to avoid explicit mapping is to take advantage
of algorithms which only require inner products for vectors
in feature space F ∈ RD, and the mapping is chosen such
that these high-dimensional inner products can be calculated
in the original space O ∈ Rd(d << D) in terms of a kernel
function. Mercer kernel, which is a continuous, symmetric
and positive semidefinite function, is popular in kernel meth-
ods. A Mercer kernel k(·, ·) : O × O → F can be expressed
as

k(x,y) =< Φ(x),Φ(y) >= Φ(x)TΦ(y), (5)

where x and y are any two sample points in O , Φ(·) : O →
F is the the implicit nonlinear mapping function correspond-
ing to the kernel function k(·, ·). In kernel methods, Φ(·)
is typically unknown and the only way to access the feature
space is via k(·, ·). The commonly used Mercer kernels in-
clude the linear kernel, the polynomial kernels, the Gaussian
radial basis function (RBF) kernel, and the χ2 kernel [7].

3.2. Kernel Collaborative Representation-Based Classi-
fier (KCRC)

Suppose there exists a nonlinear feature mapping func-
tion Φ(·) : Rd → RD(d << D). It maps the test
sample y and the collaborative representation dictionary
A to the high dimensional feature space: y → Φ(y),
A = [a1,1,a1,2, · · · ,a1,n1 , · · · · · · ,ac,1,ac,2, · · · ,ac,nc ] →
Φ(A) = [Φ(a1,1), · · · ,Φ(ac,nc)]. We substitute the mapped
test sample and the dictionary to the formulation of CRC
(Eq. (3)) and arrive at the kernel collaborative representation
classifier (KCRC):

α̂ = argmin
α

||Φ(y)− Φ(A)α||22 + λ ||α||22 . (6)

In our work, we take advantage of the RBF kernel due
to its excellent performance reported in current literature
[13][14][15]:

k(x,y) = exp(−γ ||x− y||2), (7)

where γ > 0 is a parameter for the RBF kernels.
Obviously, we cannot easily solve the optimization prob-

lem for Eq. (6) directly due to the implicity of the mapping
function Φ(·). Fortunately, as indicated in [9], such an op-
timization problem can be addressed by resorting to kernel-
based dimensionality reduction methods. In our work, we
choose KPCA because it can even address the single-sample
per person problem, which is a common face recognition ap-
plication. In the following, we will discuss how KPCA makes
Eq. (6) feasible.

Eq. (6) is the l2-norm regularized solution to the follow-
ing equation:

Φ(y) = Φ(A)α. (8)
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Denote P = [P1,P2, · · · ,Pd] ∈ RD×m as a transfor-
mation matrix which projects the high dimensional sample
points in F into a low dimensional subspace with dimension-
ality m. Recall that A =

[
a1,a2, · · · ,aN

]
. For KPCA, each

projection vector Pj can be deemed as a linear combination
of samples in F , i.e.,

Pj = Φ(A)βj , (9)

where each βj ∈ RN , j = 1, 2, · · · ,m(m < N)1 is a nor-
malized eigenvector associated with the j-th largest eigenval-
ues corresponding to the following Eigenvalue problem [15]:

Nλβ = Kβ, (10)

where K = (Φ(A))TΦ(A) is the kernel Gram matrix and
Kij = k(ai,aj). Denote V = [β1,β2, · · · ,βm], from Eq.
(9) we can obtain

P = Φ(A)V, (11)

Performing dimensionality reduction with P to both sides of
Eq. (8) we can get

PTΦ(y) = PTΦ(A)α. (12)

Substitute Eq. (11) into Eq. (12) we have

VTk(·,y) = VTKα. (13)

where k(·,y) = [k(a1,y), · · · , k(aN ,y)]T = Φ(A)TΦ(y).
Now, we can see, by taking advantage of KPCA, given a ker-
nel function k(·, ·),V,K and k(·,y) are easy to be calculated,
which makes Eq. (13) feasible. The corresponding l2-norm
regularized optimization problem is equivalent to:

α̂ = argmin
α

∣∣∣∣VTk(·,y)−VTKα
∣∣∣∣2
2
+ λ ||α||22 . (14)

The solution can be easily determined according to [16]:

α̂ = ((VTK)T (VTK) + λ · I)−1 · (VTK) · (VTk(·,y)).
(15)

3.3. Implementation and Relationship to Related Work

The proposed KCRC algorithm is summarized in Algorithm
1. In Eq. (15), let Q = ((VTK)T (VTK)+λ ·I)−1 ·(VTK).
Clearly, Q is independent of y such that it could be pre-
calculated as a projection matrix. When a query sample y
comes, we should just simply project (VTk(·,y)) onto Q,
which makes KCRC very fast.

KCRC is a direct extension of CRC [12] by incorporating
the kernel trick, therefore is more suitable for samples with in-
herent nonlinear structures. Compared with SRC [4] [6] and
its kernel extensions [7] [8] [9], KCRC inherits the merits of
CRC and avoids solving the time-demanding l1-norm mini-
mization problem, thus should be more efficient and easy to
implement.

1m is the number of the reserved KPCA dimension.

Algorithm 1 Kernel Collaborative Representation Classifier
(KCRC)
Input: A test image vector y ∈ Rd×1, dictionary A =

[a1,a2, · · · ,aN ] ∈ Rd×N , the regularization parameter
λ, and the reserved KPCA dimensionality m.

Output: The identity of y.
1: Compute the kernel Gram matrix K where

Kij = k(ai,aj), and a vector k(·,y) =
[k(a1,y), · · · , k(aN ,y)]T .

2: Compute the matrix V = [β1,β2, · · · ,βm] by solving
the eigenvalue problem: Nλβ = Kβ.

3: Normalize the columns of (VTK) and (VTk(·,y)) to
have unit l2-norm.

4: Compute the KCRC coding coefficients
α̂ = ((VTK)T (VTK)+λ ·I)−1 ·(VTK) ·(VTk(·,y)).

5: Compute the regularized residuals
ri =

∣∣∣∣(VTk(·,y))− (VTK)iδi(α̂)
∣∣∣∣
2
/ ||δi(α̂)||2

6: Output the identity of y as identity(y) = argminiri(y).

4. EXPERIMENTAL RESULTS

In this section, experiments are conducted on two publicly
available face databases, namely, the AT&T [17] and the
FERET face databases [18] to illustrate the effectiveness of
the proposed KCRC algorithm. We will also compare our
algorithm with several state-of-the-arts: Linear Regression
Classifier (LRC) [19], CRC [12], SRC [4] and KSRC [9].
We implement the KCRC algorithm using 64-bit Matlab plat-
form on a PC with 2.13 GHz Intel I3 CPU and 4 GB memory.
The regularization parameter λ is set as 1e-4 as indicated
in [12]. All the competing algorithms are implemented on
the same platform with parameters set as the original paper
recommended.

4.1. Results on the AT&T Face Database

The AT&T face database includes 40 subjects with 10 im-
ages per person. Several expression variations exist in this
database, e.g., open or closed eyes, smiling or nonsmiling,
with or without glasses. It also has a maximum rotation up
to 20 degree with some scale variations of about 10 percent.
Figure 1 shows all the samples of the same person.

A simple observation is that the performance of all the
evaluated algorithms depend on the number of training sam-
ples for each subject. In our experiments, we randomly par-
tition the 10 images into two non-overlapped parts, one part
serves as the gallery and the other serves as the probe set.
We varied the sample number of the gallery from 1 to 5. All
experiments are conducted with images downsampled to an
order of 10 × 5, and we set γ = 2 for the RBF kernel,
m = 80. The average recognition rate versus the number
of gallery samples is illustrated in Table 1, from which two
useful conclusions can be drawn:
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Fig. 1. Sample face images in the AT&T face database.

Table 1. Average recognition rates (%) versus the number of
gallery sample per person on the AT&T Face Database.

Methods 1 2 3 4 5
LRC [19] 73.33 80.00 82.14 85.83 92.50
SRC [4] 74.44 86.56 87.50 92.08 93.50

KSRC [9] 75.56 87.19 88.93 92.92 95.50
CRC [12] 75.83 88.44 88.57 92.50 94.50

KCRC 76.11 90.94 91.79 94.50 95.00

(a) When there are not enough gallery samples per subject
(say, less than 4), the sparsity assumption does not hold
and SRC, KSRC perform worse than CRC and KCRC.
This further implies that it is truly the collaborative repre-
sentation but not the sparsity property that improves face
recognition accuracy.

(b) When there are enough gallery samples per subject (say,
more than 3), the sparsity assumption intends to approxi-
mately hold and the performance of SRC and KSRC are
comparable to CRC and KCRC.

(c) With pose variations existed, a test sample may not be
easy to be linearly coded by the galleries, which can
explain why KCRC and KSRC have better performance
than their linear counterpart, respectively.

4.2. Results on the FERET Face Database

The number of subjects in the AT&T face database is lim-
ited. To further validate the proposed method on practical
applications, we have conducted experiments on the FERET
database, one of the most commonly used large-scale face
databases. We have used the standard FERET protocol to
conduct our experiments. The gallery set Fa consists of 1, 196
images of 1, 196 subjects. There are four probe sets: Fb (dif-
ferent expressions with gallery, 1, 195 images of 1, 196 sub-
jects), Fc (different illumination conditions with gallery, 194
images of 194 subjects), Dup I (images taken later in time,
722 images of 243 subjects), Dup II (images taken at least 18
months after the corresponding gallery, 234 images of 75 sub-
jects). All face images are properly aligned, cropped and re-
sized to 128×128 with the centers of the eyes fixed at (29,34)

Fig. 2. Sample face images in the FERET face database. (a)
Fa (b) Fb (c) Fc (d) Dup I (e) Dup II.

Table 2. Recognition rates (%) on the FERET Face Database.
Methods Fb Fc Dup I Dup II
LRC [19] 74.53 69.56 53.20 49.98
SRC [4] 82.43 82.99 60.54 59.82

KSRC [9] 83.12 84.10 60.23 59.82
CRC [12] 80.67 77.84 60.95 58.80

KCRC 81.92 82.25 61.63 60.98

and (99,34). No further preprocessing is performed. Figure 2
shows samples of the same person from the five sets.

All experiments are conducted with images downsampled
to an order of 24 × 24, and we set γ = 0.1 for the RBF
kernel, m = 450. The recognition rates of all the algorithms
on the four subsets are illustrated in Table 2, from which we
can see that KCRC consistantly performs better than CRC on
all subsets and is comparable to KSRC in average.

4.3. Efficiency

Efficiency is important for real-time face recognition appli-
cations. As illustrated in Algorithm 1, for each probe, the
proposed method mainly requires computing a kernel func-
tion with each gallery sample and then conducts CRC. We
compare the efficiency of KCRC with other competing al-
gorithms experimentally by measuring the CPU time on the
FERET database. The results are illustrated in Table 3, from
which we could conclude that CRC is about 4 times faster
than KCRC, while KCRC is 3.6 and 17.5 times faster than
SRC and KSRC.

Table 3. Average CPU time (in ms) per probe on the FERET
face database.

LRC [19] SRC [4] KSRC [9] CRC [12] KCRC
14.7 215.8 1056.4 15.2 60.5

5. CONCLUSION

We propose a novel nonlinear classifier, KCRC, for face
recognition. It is an extension to the classical CRC algorithm
and is more suitable for pattern classification in nonlinear
space by incorporating the kernel trick into the CRC frame-
work. Experimental results on the AT&T and the FERET
face databases demonstrate the priority of KCRC to CRC
and several state-of-the-art methods in terms of accuracy and
efficiency.
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