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ABSTRACT
Consider a message coded for storage in which a fraction of
the stored data is stolen. Ideally, the data remaining should al-
low message recovery, while the stolen data should reveal no
information on the message. This gives a twist on the erasure
wiretap channel, in that “Bob” no longer has a clear channel
from “Alice”. We show how the storage capacity can, as in
other multi-terminal coding problems, be approached using
nested codes, and propose nested erasure codes using Krylov
subspaces. These offer good performance and perfect secrecy,
while integrating the nested code structure naturally.
Key words: secure distributed storage; perfect secrecy.

1. INTRODUCTION

Consider a message m comprising k bits, which is to be stored
securely in the “cloud”: The bits (after coding) will be phys-
ically stored in a distributed data center, ideally accessible
from anywhere, and with two basic requirements:

1. Data integrity: If some of the data storage facilities
go offline or suffer damage, the message m can still be
recovered from those remaining.

2. Data security: If an adversary compromises a data
center and acquires the contents of the storage facili-
ties, she will gain no information on the message m.

The first constraint nominally requires having multiple data
centers distributed geographically. If a data center goes off-
line (due to, e.g., power failure, natural disaster, or sabotage),
the remaining data centers remain active, allowing message
recovery. The simplest example is mirroring, whereby the
contents of one server are copied verbatim to another, corre-
sponding to a spatial repetition code. While this ensures data
integrity, it offers no security, since an adversary need only
“pwn” a single data center to steal an arbitrary message.

The data security constraint is arguably more crucial. Data
stored in the cloud should expectedly have some value: Finan-
cial information, proprietary secrets, or strategic or classified
data, constitute information that adversaries may attempt to

steal, through whatever means available. This consideration
would suggest that data be encrypted. We adopt the viewpoint
that cryptography proves an insufficient defense, not because
an adversary could crack the cryptosystem, but rather could
obtain the key through some weakness in key management.1

As such, we focus instead on information-theoretic secrecy:
Even if an adversary obtains the entire data (call it Z) of one
(or even a few) of the data centers, no information on any
useful message will be leaked: I(m;Z)→ 0.

Other scenarios may likewise be envisaged. An unscrupu-
lous employee, for example, may walk off with a hard disk
from a RAID array hoping to gain valuable data, or data com-
munication between shared servers may be siphoned off from
a man-in-the-middle attack. This leads us to consider a parti-
tion channel, as sketched in figure 1, in which Eve (the adver-
sary) steals a fraction α of the data, and Bob (the ligitimate
owner) retains the remaining fraction 1− α of the data. Here
Alice is a client who “entrusts” her data to the cloud. This
is more complicated than the erasure wiretap channel (e.g.,
[4]–[6]), since Bob no longer has a clear channel from Alice.

2. STORAGE CAPACITY

As is well known (e.g., [7]–[9]), data integrity calls for a suit-
able erasure code. Formally, a k-bit message m is mapped to
an n-bit code word x, which is written for storage among the
data centers. A portion nα of the bits are stolen by Eve (and
designated by z), while the remaining n(1 − α) are retained
by Bob (and designated by y). Data integrity means that Bob
can recover the message m, while data security means that
Eve infers negligible information on the message from her
stolen bits. The largest attainable ratio k/n under these con-
straints is the storage capacity C. The secrecy capacity result
of [10], [11] translates directly to:

Property 1 The storage capacity C, subject to data integrity
and data security constraints if up to a fraction α of the bits
is stolen, is C = 1− 2α.

1Social engineering schemes (e.g., [1]–[3]) exploit the human factor as
the weakest link in the chain: Someone having access to a decryption key
may inadvertently cough it up, or may be recruited by an adversary.
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Fig. 1. Partition channel, in which Eve steals up to a fraction
α of the bits.

The result is verified easily by calculating the difference
in channel capacities connecting Alice to Bob and Alice to
Eve, respectively2; Bob’s erasure channel has capacity 1−α,
while Eve’s has capacity α, giving the difference C = 1−2α.

3. CODE CONSTRUCTION AND PRIOR WORK

Let the message m comprise bnCc = bn(1 − 2α)c bits, and
let X (resp., Z) denote the set of n-bit code words (resp.,
nα-bit stolen portions). As in [4], [12], consider 2bnCc code
books {B(m)}, one for each message realization m. For a
given message m, the actual code word x ∈ X is randomly
selected from B(m).

Each code book B(m) is capacity saturating3 for Eve’s
channel (with capacityCE = α) provided I(X;Z|M = m) ≥
n(α− δ) for a small constant δ. Therefore,

I(X;Z|M) =
∑
m

Pr(M = m) I(X;Z|M = m)

≥ n(α− δ) for sufficiently large n. (1)

To show the link between capacity saturation and weak
secrecy [16], expand I(MX;Z) in two ways (as in [10], [4]):

I(MX;Z) = I(M ;Z) + I(X;Z|M)

= I(X;Z) + I(M ;Z|X)

Now, the capacity of Eve’s channel is given as CE = α =
supPX(X)[I(X;Z)/n] so that I(X;Z)/n ≤ α. And since
M → X → Z forms a Markov chain, we have I(M ;Z|X) =
0 [17, §2.8]. We may thus isolate I(M ;Z) as

I(M ;Z) = I(X;Z)− I(X;Z|M)

≤ n[α− (α− δ)] = nδ.

2The result from [11] properly asserts the secrecy capacity to be

C = max
U→X→(Y,Z)

[I(U ;Y )− I(U ;Z)]

where U is an auxiliary random variable that forms a Markov chain with
X and (Y, Z). If the eavesdropper’s channel is degraded, meaning that
I(U ;Y ) ≥ I(U ;Z) for all Markov chains U → X → (Y, Z), this sim-
plifies to C = maxP (x)[I(X;Y ) − I(X;Z)] with P (X) the input dis-
tribution. If this same distribution maximizes both I(X;Y ) and I(X;Z)
(applicable here since both channels are symmetric, and hence maximized
by a uniform input distribution), the maximized difference of mutual infor-
mation terms becomes the difference of channel capacities.

3Some authors offer here instead a capacity approaching code, which
would reverse the inequality (1) and thus belie a finite storage capacity; for
connections to channel resolvability [13], [14], see [15].

Thus I(M ;Z)/n ≤ δ, consistent with weak secrecy [16].
(For the finite-block length case we consider, strong secrecy
becomes superfluous.) The rate RE of each code book B(m)
is lower bounded as RE = H(X|M)/n ≥ I(X;Z|M)/n ≥
(α− δ) = CE − δ; hence the moniker capacity saturating.

A practical realization uses nested codes. Consider map-
ping the bnCc-bit message m to an n-bit word x as per[

0
m

]
≡
[
H1

H∆

]
︸ ︷︷ ︸

H

x (mod 2) (2)

Here H1 is a binary parity-check matrix of a capacity-ap-
proaching code for a channel with erasure probabilityα, mean-
ing that if we erase up to a fraction α of bits from x (call the
erased version y), a decoding algorithm using y and H1 can
recover x (with high enough probability), and thus also re-
cover the message via m = H∆xmod2. The null space of
H1 gives the fine code [18]. If the size of H1 is l×n, then the
code rate isRB = 1−(l/n). As the capacity of a channel that
erases a fraction α of the bits is CB = 1 − α, the inequality
RB < CB imposes

(l/n) > α. (3)

Let now B(0) denote the nullspace of the parity-check
matrix H in (2) (known commonly as the coarse code [18]):

B(0) = {x : Hx ≡ 0 (mod 2)}.

From the secrecy constraint above, we desire that this give a
capacity saturating code for an erasure channel with erasure
probability 1− α. Similarly, let B(m) denote the coset

B(m) =

{
x : Hx ≡

[
0
m

]
(mod 2)

}
,

where H is partitioned as in (2), giving a code book indexed
by the message m. Each code book B(m) has identical dis-
tance properties, since one differs from another by an offset.

If the dimensions of H are j × n, then its rate is RE =
1−(j/n), and the inequalityRE ≥ CE implies j/n ≤ 1−α.
When combined with (3), the size of the message m in (2) can
now be bounded as

length(m)

n
=
j − l
n

< 1− 2α ,

consistent with Property 1.

4. KRYLOV SUBSPACE CODES

Let H be a parity-check matrix whose columns form a Krylov
sequence [19, §9.1.1]:

H = [b Ab A2b A3b · · · An−1b ] . (j × n)

Here A is a j × j binary matrix (with j < n) and b is a j × 1
binary vector, and each product A`b (with 1 ≤ ` ≤ n−1)
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is calculated modulo-2. We assume that H has full rank j,
which is equivalent to the pair (A,b) being completely con-
trollable in linear system parlance (e.g., [20]). If, in addition,
A is invertible mod2, then controllability of (A,b) implies
that any successive j columns A`b, A`+1b, . . . , A`+j−1b re-
main linearly independent, as per a “good” erasure code [21].

Suppose now A and b are partitioned according to

A =

[
A11 0
A12 A22

]
, b =

[
b1

b2

]
, (4)

with A11 of dimensions l× l and b1 of dimensions l×1. The
parity-check matrix H then naturally partitions as H =

[
H1

H∆

]
in which

H1 = [b1 A11b1 A2
11b1 · · · An−1

11 b1 ] . (l × n)
This likewise assumes a Krylov sequence structure, and thus
should also provide a “good” erasure code provided A11 is
invertible and (A11,b1) is controllable.

One may check that H will generically be a “medium den-
sity” parity-check matrix, since the columns will have about
half their entries equal to 1, for random choices of A and
b. As such, message-passing decoding will not perform well
with such parity-check matrices. Instead, linear algebra de-
coding works well for reasonable block lengths n; see §5.

We recall that the Cayley-Hamilton theorem [20] asserts
that a square matrix satisfies its own characteristic equation.
That is, given the characteristic polynomial p(λ) defined as

p(λ) = det(λI−A)

≡ λj + aj−1λ
j−1 + · · ·+ a2λ

2 + a1λ+ a0,

with each ai ∈ {0, 1} (by finite field conventions [22]), the
matrix function obtained by replacing λwith A (see [23], [19,
Ch. 11]) gives a null result:

p(A) = Aj + aj−1A
j−1 + · · ·+ a1A+ a0I ≡ 0 (mod 2).

To deduce the code words {x : Hx ≡ 0 (mod 2)}, the
coefficients {ak} hold the key, since the relation

p(A) =

j∑
k= 0

akA
k ≡ 0 (mod 2)

clearly implies that

j∑
k= 0

akA
kb ≡ 0, or [b Ab A2b · · · Ajb]


a0

a1

a2
...
aj

 ≡ 0.

This shows which combinations of the rows of H sum to zero.
This relation also implies that, for any integer ` > 0,

j∑
k= 0

akA
k+`b = A`

j∑
k= 0

akA
kb︸ ︷︷ ︸

0

≡ 0.

We can combine these relations into matrix form as

[b Ab · · · An−1b ]︸ ︷︷ ︸
H (j × n)



a0 0 · · · 0

a1 a0
. . .

...

a2 a1
. . . 0

...
. . . . . . a0

aj aj−1
. . .

...

0 aj
. . .

...
...

. . . . . . aj−1

0 · · · 0 aj


︸ ︷︷ ︸

G [n× (n−j)]

≡ 0

to identify the generator matrix G for the coarse code. Thus
any x satisfying Hx ≡ 0 (mod 2) can be written as x =
Gξ mod2 for some ξ. Using instead the coefficients from
the characteristic polynomial of A11, we obtain the generator
matrix G1 of the fine code, in the same manner.

Remark: Note that a0 = detAmod2; we should thus en-
sure that a0 6= 0, i.e., that A be invertible modulo-2. Oth-
erwise G would vanish in its first row, and any code word x
would have zero as its first entry. �

To each code word x = [x0, x1, . . . , xn−1]
T we may as-

sociate a polynomial

x(λ) = x0 + x1λ+ x2λ
2 + · · ·+ xn−1λ

n−1.

In view of the Toeplitz structure of G (constant along any
diagonal), the operation x = Gξ translates to

x(λ) = p(λ) ξ(λ)

where ξ(λ) =
∑
k ξkλ

k is built from the information bits
ξ fed to the generator matrix, and p(λ) is the characteristic
polynomial of A, giving thus the generator polynomial for
the code. It is straightforward to check that

p(λ) = q(λ) r(λ)

where q(λ) [resp., r(λ)] is the characteristic polynomial of
A11 [resp., A22] in (4). Thus nested codes have generator
polynomials forming a divisibility chain.

The connection to cyclic codes is straightforward to show:

Property 2 A Krylov-generated parity check matrix H de-
scribes a cyclic code if and only if An ≡ I (mod 2).

For sufficiency, let x = [x0, x1, . . . , xn−1]
T be a code

word, so that 0 = Hx = bx0 +Abx1 + · · ·+An−1bxn−1.
This still vanishes if multiplied by A, so that

0 = Abx0 +A2bx1 + · · ·+Anbxn−1

≡ bxn−1 +Abx0 + · · ·+An−1bxn−2 (mod 2)
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since Anb ≡ b. This confirms that [xn−1, x0, . . . , xn−2]
T

is also a code word. For necessity, the generator polynomial
p(λ) of any cyclic code must divide λn− 1 (e.g., [24, §5.2.3],
[22, §5.4]), so that λn − 1 = p(λ)Q(λ) for some polynomial
Q(λ). Replacing λ by A gives An − I = p(A)Q(A) ≡ 0
since p(A) ≡ 0 by the Cayley-Hamilton theorem. �

5. LINEAR ALGEBRAIC DECODING

Let x = G1ξ be a word from the fine code, in which cer-
tain positions have been erased, with the indices of the known
positions denoted i1, i2, . . . , im. We may then write the equa-
tions for the known bits using a submatrix built from rows i1,
. . . , im of the generator matrix G1 for the fine code as

xi1
xi2

...
xim

 =


gi1,1 gi1,2 · · · gi1,n−l
gi2,1 gi2,2 · · · gi2,n−l

...
...

. . .
...

gim,1 gim,2 · · · gim,n−l


︸ ︷︷ ︸

G1


ξ1
ξ2
...

ξn−l


︸ ︷︷ ︸

ξ

. (5)

Here the elements of ξ are the unknowns. Provided the ma-
trix G1 has full column rank (here, n−l), a unique solution
exists for ξ which may be obtained in polynomial time us-
ing, e.g., Gaussian elimination in modulo-2 arithmetic. Once
ξ is obtained, the entire code word x may be regenerated as
x = G1ξ, and the erased positions are then recovered. When
G1 has rank less than n−l, a unique solution for the code
word x does not exist.
Simulation example. Consider a nested code with length
n = 500, and a message length of k = 150 bits. Any prac-
tical code must have rate below capacity, i.e., (k/n) ≤ C =
1 − 2α, giving α ≤ (1 − k/n)/2 = 0.35 as the maximum
fraction of stolen bits. Here l = nα = 175 is the number of
rows in H1 (the parity-check matrix for the fine code). A and
b were randomly generated, and tested for whether A was in-
vertible and (A,b) controllable [and likewise for (A11,b1)],
and retained once affirmative responses were returned.

From the message m, a code word x is generated as

l rows {
k rows {

[
0
m

]
=

[
H1

H∆

]
xp, x = xp +Gξ ∈ B(m)

in which xp can be obtained using linear algebra and ξ is
chosen randomly. Both Bob and Eve know the nested code
H =

[
H1

H∆

]
, but not the message m, much less which code

word x is selected from B(m). Knowing only that H1x = 0,
Bob and Eve both attempt to construct generator bits ξ from
their available bits using (5), giving in either case a code word
estimate x̂, and thus a message estimate m̂ = H∆x̂.

Figure 2 plots the bit error rate in estimating the message
m versus the actual fraction β of bits stolen by Eve (with β ≤
α), averaged over 500 independent realizations of the erasure
positions in x for each theft fraction β. Bob’s bit error rate is

0.20 0.25 0.30 0.35
0.0

0.1

0.2

0.3

0.4

0.5

Fraction β of stolen bits

Bi
t e

rr
or

 r
at

e

Eve’s bit error rate

Bob’s bit error rate

k = 150
n = 500

Fig. 2. Bit error rates for Bob and Eve versus the actual frac-
tion β ≤ α of stolen bits, with α = 0.35 the capacity limit.
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Fig. 3. Number of bits leaked versus fraction β of stolen bits.

identically zero up to fractions exceeding 0.33, indicating that
his erasure code is close to capacity. The rise in bit error rate
as β approaches α (the capacity limit) is due to an increased
number of G1 submatrices in (5) having insufficient rank.

Eve’s system of equations persistently presents a rank-
deficient G1, offering at least 2n(1−α−β) solutions for ξ and
thus for her estimate x̂. A BER of 0.5 implies that her mes-
sage estimate is statistically no better than a coin flip. �

Let η1, η2, . . . , η` be a basis for the right null-space of
G1 in Eve’s system (5), and set F ∆

= H∆G1 [η1 η2 · · · η`].

Property 3 Eve’s uncertainty is H(M |Z = z) = rank(F).

The proof is simple and so omitted. We can estimate the
equivocation I(M ;Z) = H(M) −∑zH(M |Z = z) Pr(z)
by averaging over realizations of z, as plotted in Figure 3,
which shows identically zero leakage for β ≤ 0.33, and less
than one bit leaked as β → α. For longer block lengths n,
concatenated codes [25], polar codes [26] or LDPC designs
[5], [12] would logically prove of interest, if a coherent nested
code design procedure can be harnessed; see, e.g., [27].
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