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ABSTRACT

Electric Network Frequency (ENF) fluctuations based forensic anal-
ysis is an emerging way for such multimedia authentication tasks
as time-of-recording estimation, timestamp verification, and clip in-
sertion/deletion forgery detection. ENF fluctuates due to dynamic
changes in load demand and power supply, and these fluctuations
travel over the power lines with a finite speed. In this paper, experi-
ments are conducted on ENF data collected across different locations
in the eastern grid of the United States to understand the relation-
ship between the signals recorded at the same time at these locations.
Based on these experiments, a signal processing mechanism is devel-
oped to demonstrate that ENF fluctuations across different locations
exhibit a measure of similarity with each other, which is proportional
to the distance between the locations. Such observations motivated
a location estimation protocol based on the similarity of ENF sig-
nals with respect to anchor nodes. Under certain conditions, the pro-
posed protocol is shown to provide an estimation accuracy of 90%.
Challenges in the application of ENF signal analysis for location of
recording estimation of multimedia signal are also discussed.

1. INTRODUCTION

Advancement in multimedia technologies has given rise to prolifera-
tion of such recording devices as voice recorders, camcorders, digi-
tal cameras, etc. A huge amount of digital information created using
these devices can be stored on disks or uploaded on such social me-
dia platforms as YouTube and Facebook. Metadata describing such
important information as the time and the place of recording may be
manually added or embedded into a media recording using built-in
clocks and GPS in the recording devices. However, digital tools can
be used to modify the stored information. Developing forensic tools
to authenticate multimedia recordings using an environmental signa-
ture, known as Electrical Network Frequency (ENF) signal, which
emanates from power networks is an active area of research [1] [2].

ENF is the supply frequency of electric power in distribution net-
works, and its nominal value is 50 or 60 Hz depending on the geo-
graphic location. An important property of the ENF signal is that its
value fluctuates around the nominal value: on the order of approxi-
mately 50-100 mHz in the United States. These fluctuations are due
to variations in the load on the power grid and can be considered as
occurring at random. The randomly varying ENF signal is embed-
ded into audio recordings due to electromagnetic interference from
nearby power lines in audio [1], and in video recordings due to invis-
ible flickering of electric powered indoor lightings [2]. This property
of the ENF signal has enabled its use in media forensic analysis, par-
ticularly for timestamp authentication and forgery detection.

The ENF signal is extracted from a recording by means of filter-
ing operations followed by instantaneous frequency estimation. ENF
can be estimated using Fourier transform based frequency estimation
methods as described in [2]. For timestamp authentication and veri-
fication, similarity between the ENF signals extracted from multime-
dia and power databases at the corresponding time can be measured
by means of the Normalized Cross-Correlation (NCC) coefficient. A
high value of NCC indicates the time at which the recording took
place. High resolution frequency estimation methods such as MU-
SIC and ESPRIT have been shown to provide better instantaneous

frequency estimation of the ENF signal for short segments and in
the presence of higher noise levels, as compared with the Fourier
transform based methods [3]. The performance of ENF matching
of two signals is further improved by considering an autoregressive
model of the signal [4]. Based on this model, matching the two ENF
signals by estimating the correlation coefficient between the corre-
sponding “innovations” sequences provides a higher confidence in
time-of-recording estimation and verification.

Most of the existing research has focused on utilizing the ENF
signal as a timestamp for multimedia recordings. An important in-
triguing question that is still unanswered in the literature is: “can the
ENF signal be used to estimate or verify the place of recording of
an audio or a video recording?” An answer in affirmative can pave a
way towards the potential usage of ENF signal analysis in automatic
geo-tagging of multimedia data uploaded on YouTube and Facebook
in addition to numerous forensic and law enforcement applications.

At an inter-grid level, it may be possible to differentiate between
the recordings conducted across different grids, as the fluctuations in
the ENF signal are typically different at the same time across inde-
pendently operated grids. At an intra-grid level, most of the exist-
ing work has assumed that the ENF signals across an interconnected
power grid are similar at the same time. However, minor variations
are likely to be present in the frequency fluctuations at different lo-
cations due to local changes in the load on the grid and the finite
propagation speed of the effects of such load changes to other parts
of the grid [5]. In this paper, we study such effects by conducting ex-
periments on the ENF data collected from different locations within
the eastern grid of the United States. As it will be shown later in the
paper, there exists differences among simultaneous ENF signals ex-
tracted from recordings taken in different locations within the same
interconnected power grid. Our study here builds a foundation to
design a localization protocol based on a method of half-plane inter-
section to estimate the location of recordings. The challenges arising
due to the noisy nature of the ENF signal from multimedia recordings
are also discussed.

2. PROPAGATION MECHANISM OF ENF SIGNAL

The fluctuations in the ENF signal in the same grid are due to the
dynamic nature of the load on the grid. Power demand and supply in
a given area follow a cyclic pattern. For example, demand increases
during evening hours in a residential neighborhood, as people switch
on air-conditioning and other power units. For robust operation of the
grid, any load change is regulated by a control mechanism [6]. An
increase in the load causes the supply frequency to drop temporarily;
the control mechanism senses the frequency drop and starts drawing
power from adjoining areas to compensate for the increased demand.
As a result, the load in adjoining areas also increases, which leads to
a drop in the instantaneous supply frequency, and the overall power
supply will be driven up to compensate the rising load which leads
to a drop in the instantaneous supply frequency in those regions. A
similar mechanism is used to compensate for an excess supply of
power flow that leads to a surge in supply frequency.

A small change in the load in a given area may have a localized
effect on the ENF in that area. However, a large change such as one
caused by a generator failure may have an effect on the whole grid. In
the US eastern grid, these changes are known to propagate along the
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grid at a typical speed of approximately 500 miles per seconds [5].
We conjecture that load change may introduce location specific sig-
natures in the ENF patterns, and such differences may be exploited
to narrow down the location of a recording within the grid. Due to
the finite speed of propagation of frequency disturbances across the
grid, we anticipate that ENF signals would be more similar for loca-
tions close to each other as compared with those farther apart. Such a
property of ENF signal propagation across the grid can be potentially
used for localization at a finer resolution within a grid by comparing
the similarity of the ENF signal in question with ENF databases that
may be available for a set of locations.

3. LOCATION DEPENDENCE OF ENF SIGNALS

As a first step to explore the availability of location dependent prop-
erties of the ENF signals, we focus on the ENF signal obtained di-
rectly from the power mains. This provides a most favorable con-
dition in terms of a high signal-to-noise ratio (SNR) of the power-
ENF signal. As ENF signals collected across different locations are
similar to each other over time, exploration using high SNR signals
may help us in understanding if ENF signals exhibit some location
specific characteristics that can potentially be exploited to devise a
localization protocol. Such a study may be considered an initial step
towards gaining an understanding of the location estimation capabil-
ities of ENF signals. This understanding can pave a way towards
devising solutions to a more difficult problem of location estimation
from audio and video recordings, as ENF signals in such recordings
are present in a distorted form and at a very low SNR.

In Fig. 1(a), a plot of ENF signals extracted from three simul-
taneous short recordings conducted in College Park-MD, Princeton-
NJ, and Atlanta-GA is shown. These three locations are part of the
US eastern grid. From this figure, we observe that all three ENF
signals are highly correlated at a macroscopic level; however, in the
zoomed plot shown in Fig. 1(b), some differences can be seen across
the three recordings. We extract these variations using a filtering
mechanism, and then compare them to understand a relationship be-
tween signals recorded at different locations.

3.1. Signal Processing Mechanism to Extract ENF variations

As can be seen from Fig. 1(b), the variations in simultaneous ENF
signals recorded across different locations of the same grid are
present at high frequencies. To extract these variations, we use a
high pass filtering mechanism by passing temporally aligned ENF
signal, f{k}(n), recorded at kth location through a smoothening
filter, and subtracting the resulting output signal from f{k}(n). The
corresponding high pass filtered output, f{k}

hp (n) is given by:

f
{k}
hp (n) = f

{k}(n)−

M−1

2∑

m=−M−1

2

w(m)f{k}(n−m) (1)

where f{k}(n) is the ENF value at time n, w(·) is the coefficient of
the smoothening filter, and M is the filter order for feature extraction,
chosen as an odd number. After extracting high pass filtered signals
for each location, their pair-wise cross-correlations are obtained. The
pair-wise cross-correlation between any two filtered segments at time
n from the kth and the lth location is given by:
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∑N−1

p=0
f
{k}
hp (n+ p)f

{l}
hp (n+ p)

√∑N−1

p=0
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where N is the length of the signal segment. A block diagram repre-
senting this signal processing mechanism is shown in Fig. 2.

3.2. Case Study 1: 3-Location Data on the US East Coast

In this section, we describe our experiments on a 10-hour long si-
multaneous recording of power data from three locations in the US
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Fig. 1. Sample ENF signals extracted from recordings done in three
locations in the US eastern grid of US at the same time. (figures best
viewed in colors).

Fig. 2. Signal processing mechanism to explore intra-grid ENF rela-
tions.

eastern grid: College Park in Maryland, Princeton in New Jersey,
and Atlanta in Georgia [7]. We use the mechanism described in
Sec. 3.1 to estimate the cross-correlation between filtered ENF data
from all three locations. We divide the signal into non-overlapping
segments of 10 minutes each. Instantaneous frequency is estimated
every 1 second using the subspace based ESPRIT [8] method, as
this method provides better frequency estimation accuracy than other
methods [3]. The plot of the correlation coefficients between pro-
cessed ENF signals at different locations for filter order M = 3 is
shown in Fig. 3. It can be observed from this figure that the cor-
relation coefficient between the signals from city pairs far apart in
geographical distance is less than that of between the signals from
city pairs closer to each other. The correlation coefficient is approx-
imately proportional to the distance between the cities. It is worth
noting that the three cities lie approximately on a straight line on a
map. Based on these observations, we derive a relationship between
the correlation coefficient of the data from different locations and
their geographical distances.

Let us denote Princeton-NJ by city 1, College Park-MD by city
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Fig. 3. Correlation coefficient between processed ENF signals for 3-
location data on US east coast for a 600-second long query segment.

2, and Atlanta-GA by city 3. Assuming that city distance follows
a linear relationship with the correlation coefficient, we use the val-
ues of correlation coefficients ρ1,2, ρ2,3, and corresponding city geo-
graphical distances d1,2, d2,3 to obtain an estimate of d1,3 for a given
observation of ρ1,3. Based on the linear relationship, an estimate of
d̂1,3 for a given ρ1,3(n) can be given as:

d̂1,3 = d1,2 +
d1,2 − d2,3

ρ1,2 − ρ2,3
(ρ1,3 − ρ1,2). (3)

We compute the mean distance estimation error by averaging the
absolute difference between d̂1,3(n) and true geographical distance
d1,3 for different query segments. The plot of the mean distance
error in distance estimation for different segment lengths and filter
orders is shown in Fig. 4(a). From this figure, we observe that when
the filter order M = 3 is used, segment of 900 seconds provides
an estimate of distance within an accuracy of 24 miles. Increasing
the order of the filter worsens the distance estimates, because the use
of more data in filtering of the ENF signal averages out the effects,
which may have been propagated due to the finite propagation speed
of the frequency disturbances across the grid. To understand the ef-
fect of temporal resolution in distance estimation, we fix M = 3
and plot the average distance estimation error for different duration
of instantaneous frequency estimation in Fig. 4(b). From this figure,
we observe that the best estimates are obtained when instantaneous
frequency is estimated every 1 second. Such a phenomenon can be
explained from the finite speed of signal propagation, which is empir-
ically determined to be in the order of 500 miles for eastern grid [5].
As we increase the duration of data for instantaneous frequency esti-
mation, the effect of the signal propagation is averaged out, leading
to a decrease in the accuracy of distance estimates. Decreasing the
signal duration for instantaneous frequency estimation by less than
1 second leads to an error in frequency estimation itself due to the
small number of data samples available for frequency estimation.

Based on this case study on 3-location data, we see that ENF sig-
nals have the potential to be used as location-stamps. The correlation
coefficient between the data recorded at an unknown location and a
known location can be used to estimate the distance of the record-
ing location from the known location. Known locations can behave
as anchor nodes in designing localization protocols [9]. In the next
section, we discuss another case study on 5-location data in the US
eastern grid that reveals additional challenges in localization.

3.3. Case Study 2: 5-Location Data on the US East Coast

For this experiment, power data was collected from two more lo-
cations of Champaign in Illinois and Raleigh in North Carolina in
addition to the three locations used in Sec. 3.2 in the eastern grid
of US. This 5-location data is 4 hours in duration. After temporally
aligning the signals, we use the mechanism described in Sec. 3.1
to estimate the correlation coefficients between the data from differ-
ent city pairs for a filter order M = 3 and a segment length of 10
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Fig. 4. Mean error in distance estimation between Princeton and
Atlanta using a linear relationship between correlation coefficients
and distance between the cities.

minutes. The plots of the correlation coefficients between data from
different cities are shown in Fig. 5. From these figures, we observe
that the correlation coefficients between the data collected from cities
closer to each other are higher than that of the data from cities farther
apart, as was the case with 3-location data. The relative magnitude
of the correlation coefficients are roughly inversely proportional with
the geographical distance between the cities. For example, the dis-
tance between College Park and Princeton is the least mutual distance
among all city pairs, and the correlation coefficient between the data
collected from there is the highest. However, due to a different 2-
dimension relation of the relative locations of the cities [10], it may
not be possible to use the straight line assumption used in Sec. 3.2.

As the flow of the ENF signal over the wire lines is dependent
on a variety of parameters, such as grid topology (road distance may
not equal actual wire distance), grid density, etc., the correlation co-
efficient between data from different locations may have a complex
relationship with the distance between these locations. Because of
limited data available to us, we design a localization protocol with-
out learning an explicit relationship between correlation coefficient
and distance between different locations. Instead, we make use of
the observation from our experiments that the pair-wise correlation
between the locations far apart is less than the pair-wise correlation
between the cities close to each other. Using such observations, we
devise a method of half-plane intersection to estimate an unknown
location of recording.

3.4. Half-Plane Intersection for Localization

Let us denote the location of K anchor cities by P1 = {x1, y1}, P1 =
{x1, y1}, . . . , PK = {xK , yK}. Suppose we are given ENF data
collected at all anchor cities along with their known locations. Based
on this information, we derive a localization protocol to estimate the
unknown location of a city node (denote by A) that lies in a set of lo-
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(a) Correlation with College Park data
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(b) Correlation with Chapel Hill data
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(c) Correlation with Atlanta data
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Fig. 5. Correlation coefficient between the processed ENF sig-
nals across different locations for 600-second query segment for 5-
location data on the US East Coast

cations described by the convex hull of P1, P2, . . . , PK , denoted by
D. We assume that city A’s locations lies in this set. As discussed in
Sec. 3.3, if the distance of Pi from city A is greater than the distance
of Pj from city A, we generally have ρj,A > ρi,A. Based on this
observation, we say that the location of city A lies in the half-plane
described by the set of points P̂i,j given by:

P̂i,j =

{
{X : ||X − Pi||2 > ||X − Pj ||2,X ∈ D} if ρj,A − ρi,A > 0

{X : ||X − Pi||2 ≤ ||X − Pj ||2,X ∈ D} if ρj,A − ρi,A ≤ 0

(4)
The conditions described in Eq. (4) are the sign bit of the dif-

ference between the correlation coefficients. These equations make
use of a highly quantized information from the correlation coeffi-
cient. The conditions also provide us with hard decision boundaries
of the half-plane, and does not take into account the noisy nature of
pair-wise correlation coefficients. For example, when the correlation
coefficients of the ENF signal of city A with ith and jth locations
are very close to each other, i.e., |ρi,A − ρj,A| < ε for a small ε,
the confidence in assigning a half-plane to the feasible solution set
P̂i,j is reduced in Eq.( 4). To compensate for such values of correla-
tion coefficients, we replace the feasible set given by Eq.( 4) with the
following equation with a tolerance ε:

P̂i,j =

{
{X : ||X − Pi||2 > ||X − Pj ||2,X ∈ D} if ρj,A − ρi,A > ε

{X : ||X − Pi||2 ≤ ||X − Pj ||2,X ∈ D} if ρj,A − ρi,A ≤ ε

(5)
Using the correlation value obtained from all the anchor nodes,

the set of feasible points can be further reduced by computing the
intersection of all the feasible half-planes as following:

P̂A = ∩i,j P̂i,j i, j ∈ {1, 2, . . . ,K}, i 6= j (6)

As we have ENF data from the five locations, we use four loca-
tions as anchor cities and use the ENF data of the fifth city to estimate
its location via the proposed half-plane intersection method. Due to
the limited amount of data, we measure the estimation accuracy of
our method by measuring the fraction of estimates that contain the
actual position of the query city. If data from more anchor cities is

available, location estimates can be defined using such metrics as the
centroid of the feasible set.

Fig. 6 shows the plot of location estimation accuracy of different
cities by considering other cities as anchor nodes. From this plot, we
observe that the location estimation accuracy of some cities are very
high for certain values of ε. Location estimation accuracy of NJ and
CP is approximately 100% and 85% for ε = 0.05. For low values of
ε, the localization accuracy is less, since the hard decision rule does
not provide a correct estimate when measurements are noisy. As can
be seen from Fig. 5(c) and 5(d), the correlation coefficient values
for different city data from Champaign-IL and Atlanta-GA are quite
close to each other, and therefore it becomes difficult to use these
values for assigning feasible half-plane regions. Adding more anchor
nodes and placing them strategically may lead to a better location
estimate.
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Fig. 6. Location estimation accuracy on 5-location US east coast data
using the proposed half-plane intersection method.

4. DISCUSSIONS

In Sec. 3, we described the location estimation capabilities of the
ENF signals. For multi-location data, we proposed a half-plane in-
tersection method to estimate the location of an unknown record-
ings. The localization accuracy from this method can be improved by
adding more locations as anchor nodes. The number of constraints
to estimate the feasible region increases on the order of O(K2) with
the number of anchor cities K. Also, our current formulation has
used highly quantized information from correlation coefficients to
determine the feasible region, i.e. only the sign of the difference be-
tween the correlation coefficient of the query processed ENF signal
with the ENF signals from any two anchor locations. The correla-
tion coefficient generally carries some distance related information
as was shown for 3-location data. Combination of these two aspects
of correlation coefficients may lead to a better localization approach
that provides a smaller set of the feasible solution as compared with
the simple half-plane approach presented above. This is a part of our
ongoing work.

The primary focus of this paper was to explore the uncharted
application of ENF signal analysis for intra-grid location estimation
of multimedia data. This first study conducts experiments on power
ENF signals and provides encouraging results towards that direction.
Multimedia ENF data is, however, more challenging than power ENF
data because of its noisy nature. As we are utilizing the high fre-
quency variations of the ENF signal to extract a meaningful metric
for localization, the noisy nature of the ENF signal in multimedia
data may make the localization task difficult. Furthermore, as shown
by our experiments, location specific variations are best captured us-
ing instantaneous frequencies estimated at 1 second temporal reso-
lution; reliable ENF signals extraction from multimedia data at such
a high temporal resolution is also a research challenge. Nevertheless,
the results presented in this paper demonstrate that ENF signals have
a strong potential to be used as a location-stamp.
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