
STEGANALYSIS IN RESIZED IMAGES

Jan Kodovský Jessica Fridrich

Binghamton University
ECE Department
Binghamton, NY

ABSTRACT

It is well known that the security of a given steganographic
algorithm strongly depends on the statistical properties of
the cover source. In this paper, we study how downsam-
pling affects steganographic security. The secure payload no
longer scales according to the square-root law because resiz-
ing changes the statistical properties of the cover source. We
demonstrate this experimentally for various types of resizing
algorithms and their settings and thoroughly interpret the re-
sults. Modeling digital images as Markov chains allows us to
compute the Fisher information rate for the simplest resizing
algorithm with the box kernel and derive the proper scaling of
the secure payload with resizing. The theory fits experimental
data, which indicates the existence of a new scaling law ex-
pressing the length of secure payload when the cover length
is not modified by adding or removing pixels but, instead,
by subsampling. Since both steganography and steganalysis
is today commonly evaluated through controlled experiments
on resized images (e.g., the BOSSbase), the effect of resizing
on security is of utmost importance to practitioners.

Index Terms— Steganalysis, resized images, interpolation
algorithm, steganographic security

1. INTRODUCTION

Statistical properties of cover source strongly affect stegano-
graphic security. For instance, the Square-Root Law
(SRL) [1] states that a constant level of statistical detectabil-
ity is obtained when the message length grows proportion-
ally to the square root of the number of pixels in the im-
age. This law manifests when pixels from the same source
are added/removed, e.g., by stitching together images to ob-
tain a panorama or by cropping. When the number of pixels
is changed by resizing, the statistical properties of the source
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change and the SRL no longer holds in its standard form. The
investigation of this phenomenon is the subject of this paper.

This research direction is highly relevant to practitioners
since the established method for benchmarking steganogra-
phy as well as steganalysis is routinely done on resized im-
ages. In fact, today’s most commonly used data set is the
BOSSbase database [2] whose images were resized from their
native resolution.

In the next section, we start with a simple motivational ex-
periment that shows how much the statistical detectability of
the HUGO algorithm [3] depends on the resizing kernel used
to downsample the original full-resolution images forming
the BOSSbase. To better isolate the effects of resampling,
in Section 3 we work with a homogeneous source and show
experimentally that resizing algorithms and their settings sub-
stantially change the security when measured empirically us-
ing detectors implemented as binary classifiers. In Section 4,
we provide a theoretical analysis of the observed results for
the nearest neighbor resizing by adopting a Markov chain
model for the cover source. For this type of cover source
and resizing algorithm, there exists a closed-form expression
for the steganographic Fisher information rate, which allows
us to determine the size of the secure payload that leads to
the same level of statistical detectability. The paper is con-
cluded in Section 5 where we discuss future directions and
extensions of this work.

2. MOTIVATIONAL EXPERIMENT

The BOSSbase image data set has been introduced to the
steganographic community during the BOSS competition [2].
The newest BOSSbase version 1.01 consists of 10,000 im-
ages obtained from full-resolution RAW images (coming
from eight different cameras) by first demosaicking them
using UFRaw (http://ufraw.sourceforge.net/),
converting to 8-bit grayscale, resizing so that the smaller side
is 512 pixels, and finally central-cropping to 512 × 512 pix-
els. All operations were carried out using the ImageMag-
ick’s convert command-line tool. The parameters of the
UFRaw’s demosaicking algorithm are not important for the
purpose of this paper – they were fixed for all experiments to
the same values as in the script used in the BOSS competition.
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Fig. 1. Median testing error PE for HUGO on BOSSbase
images created with four different interpolation kernels.

Statistical detectability will be measured empirically using
the minimal total detection error under equal priors, PE =
minPFA(PFA + PMD)/2, where PFA and PMD are the false-
alarm and missed-detection rates, computed from the testing
set when implementing the classifier using the ensemble [4].
We denote by PE the median testing error over ten random
splits of the database into two halves.

In this section, we represent images using the 12,753-
dimensional spatial rich model SRMQ1 [5]. Figure 1 shows
PE for HUGO (implemented with σ = γ = 1 and the thresh-
old T = 255) for four different versions of the BOSSbase.
Everything else being equal, the individual scenarios differ
only in a single parameter of the convert’s image resiz-
ing algorithm – the interpolation kernel. The four choices
were: box, Lanczos [6] (default), triangle, and cubic. The
differences are rather striking. For example, at the relative
payload 0.2 bpp (bits per pixel), the detection error dropped
from 0.27 with the default Lanczos kernel to an almost perfect
detectability (error 0.02) with bicubic interpolation. Appar-
ently, the BOSS competition outcome (and HUGO’s security)
would be viewed in a completely different light depending on
the BOSS organizers’ choice of the interpolation algorithm.

3. FURTHER INVESTIGATION

3.1. Notation and preliminaries

Representing a two-dimensional scene (the “reality”) by a
function f : R2 → R, a digital image X registered by the
imaging sensor can be defined as a (quantized) sampled por-
tion of f :

X(x, y) = Q (C∆,Θ(x, y) · f(x, y)) , (1)

where Q is a scalar quantizer and C∆,Θ(x, y) denotes a dis-
crete sampling function,

C∆,Θ(x, y) =

M−1∑
k=0

N−1∑
l=0

δ(x−x0−k∆)δ(y−y0− l∆), (2)

Fig. 2. The box, triangle, and cubic interpolation kernels.

with the parameter vector Θ = (x0, y0,M,N) and δ(x) de-
fined as δ(0) = 1 and δ(x) = 0 ∀x 6= 0. Note that X is
non-zero only at M × N equally-spaced locations of a rect-
angular portion of the real scene f uniquely defined by Θ.

The actual process of image resizing is executed by means
of a linear interpolation filter with a convolution kernel ϕ :
R2 → R satisfying

´
ϕ(x, y)dxdy = 1. Formally, resizing

X by a factor of k, one obtains:

X(k)(x, y) = Q
(
C∆/k,Θ(k)(x, y) · (X ∗ ϕ)(x, y)

)
, (3)

where the convolution (X ∗ ϕ)(x, y) serves as an approxima-
tion of the reality f(x, y). We allow the new parameter vec-
tor Θ(k) = (x

(k)
0 , y

(k)
0 , bM/kc , bN/kc) to have a different

starting point of the grid (x
(k)
0 , y

(k)
0 ) than the original image

X, i.e., the first pixel of the resized image does not have to
coincide with the first pixel of the original image. Not only
does this correspond to the specific implementations in com-
mon image-processing tools, but also, as will be shown, the
position of the point (x

(k)
0 , y

(k)
0 ) plays a crucial role in ste-

ganalysis.
For simplicity, in the rest of the paper we assume thatM =

N , x(k)
0 = y

(k)
0 for all k, and ϕ(x, y) = ϕ(x)ϕ(y). The

variable k will exclusively denote the resizing factor.

3.2. Image database and the resizing algorithm

Since the BOSSbase is a collection of images from eight dif-
ferent cameras, its images have been resized by different fac-
tors, which makes it unsuitable for isolating the subtle effects
of interpolation. Thus, for our study, we collected 3, 000
DNG images from a single camera (Leica M9) in the na-
tive resolution of 3, 472 × 5, 216 pixels, demosaicked them
using UFRaw (with the setup used during the BOSS competi-
tion), and converted to 8-bit grayscale. The resulting database
of 3, 000 never compressed (and not resized) images is the
mother database for all our subsequent experiments.

For image resizing, we used the Matlab function
imresize with the nearest neighbor (box), bilinear (trian-
gle), and bicubic (cubic [7]) interpolation kernels ϕb, ϕt, ϕc,
respectively (see Figure 2).

To resample an image by factor k, we apply the interpo-
lation formula (3) and then crop the resulting image X(k) to
the central 512 × 512 region. The cropping was included to
eliminate the effects of the SRL on images of different sizes
while keeping the statistical properties of pixels. By default,
the value of the point (x

(k)
0 , y

(k)
0 ), i.e., the location of the first
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Fig. 3. Steganalysis of LSBM in images resized by different
interpolation kernels.

pixel of the resized image, is calculated as

x
(k)
0 = y

(k)
0 = (k + 1)/2, (4)

which corresponds to centering the sampling points of X(k)

within the frame of the original image X.

3.3. Steganography and steganalysis

For illustrative purposes, we attack LSB matching (LSBM).
The stego images were created by changing the relative por-
tion β of pixels (the change rate) by either increasing or de-
creasing their values by 1, equiprobably.

To speed up the experiments, we did not use a rich model to
represent the images and, instead, opted for a more compact
feature space that is adequate for the purposes of revealing the
effects of resampling on security. The features are constructed
from a four-dimensional co-occurrence matrix formed by four
horizontally and vertically neighboring rounded noise residu-
als obtained by convolving the image with the kernel

K =

 −0.25 +0.5 −0.25
+0.5 0 +0.5
−0.25 +0.5 −0.25

 , (5)

originally introduced in [8]. Utilizing the sign and directional
symmetries of natural images [9], the co-occurrence dimen-
sionality is reduced to 169.

3.4. Results and interpretation

Figure 3 shows the steganalysis results of LSBM at a fixed
change rate achieved for a range of downsampling factors k ∈
[1, 5] and the interpolation kernels shown in Figure 2. Note
that this could be achieved by calling the Matlab’s function
imresize with kernels ’box’, ’triangle’, and ’cubic’, and
turning the antialiasing off. We remind that after resizing, all
images were always cropped to the central 512 × 512 region
to eliminate the effects of the SRL.

The testing error generally grows with increasing k, which
is to be expected since downsampling decreases the depen-
dencies among pixels. The differences between kernels are
solely due to different (linear) pixel combinations created dur-
ing the process of interpolation, which results in qualitatively
different dependencies among pixels. These are eventually
disturbed by embedding and detected by steganalysis. One of
the main messages of this article is that even a small change in
the interpolation kernel can significantly change the outcome
of steganalysis.

The progress of the errors in Figure 3 is far from
monotonous in k, which is especially apparent for the trian-
gle kernel ϕt, where the sudden drops and increases some-
times exceed 5% of the error value. There are two reasons
for such rapid changes – the distance between two pixels at
the resolution k and the position of the first pixel in the re-
sized image, (x

(k)
0 , y

(k)
0 ). For k = 2, for example, equa-

tion (4) yields x(k)
0 = y

(k)
0 = 1.5, and the pixel difference

is 2. Thus, every pixel of the resized image is exactly in the
middle between two pixels of the original image; the triangle
kernel averages both neighboring pixels. This can be seen as
a simple denoising operator that increases local correlations
among pixels and thus makes steganalysis easier. Similar ar-
guments could be applied for the case k = 4. The initial
drop at k ≈ 1.1 (for ϕc and ϕt) is again caused by the in-
creased strength of dependencies among neighboring pixels –
this time due to the fact that the pixel grids at both scales are
misaligned and most pixels from the original resolution con-
tribute to two neighboring pixels of the resized image. Note
that this is not the case for the box kernel, a simple nearest
neighbor interpolator, hence the missing initial drop.

Lastly, note the identical performance of all three kernels
at odd factors k = 3, 5 (and trivially also at k = 1). In
these cases, the pixel locations of the resized image always
coincide with certain pixels from the original grid, and since
all three kernels vanish at integer values, they are essentially
identical. Furthermore, for the triangle kernel, this means a
sudden decrease in neighboring pixel correlations (compared
to the close, non-integer values of k) and thus a sudden drop
in steganalysis performance (increased error).

The presented qualitative interpretation of Figure 3 pro-
vides insight into the inner workings of the image interpo-
lation and the importance of its individual components for
steganalysis (e.g., the alignment of the resized grid). In the
next section, we approach the problem from a theoretical per-
spective that points to an intriguing new scaling law.

4. SCALING W.R.T. IMAGE RESOLUTION

4.1. Image model

In this section we study the effects of image resizing on ste-
ganalysis analytically. To this end, we restrict ourselves to the
simplest box kernel and assume that pixels in rows/columns
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of images are first-order Markov chains (MCs) over the space
of grayscales and are thus fully characterized by a transition
probability matrix (TPM) A = (aij). Following [10], we
adopt the exponential cover model,

aij = 1/Zi exp(−(|i− j|/τ))γ , (6)

whose parameters can be estimated from a large number of
images. The parameters τ and γ were estimated using the
method of moments [11] from the Leica M9 database.

Resizing images by a factor k ≥ 1, k ∈ R, changes the
TPM A → Ak, where the matrix power is defined in a gen-
eral sense and can be evaluated via eigenvalue decomposi-
tion for non-integer k. This allows us to study the scaling
effects of image resizing on steganographic security solely
based on the statistical properties of the original cover source
(non-resized images).

4.2. Scaling factor α(k)

It is well-known that the leading term of the KL divergence
between cover and stego objects is quadratic in the change
rate β:

D(k;β) =
1

2
nβ2I(k), (7)

where n is the cover size and I(k) is the steganographic
Fisher information (FI) rate for the resize factor k. For a fixed
cover source described by its TPM and a fixed steganographic
algorithm (LSBM in our case), the authors of [10] derived a
closed-form expression for I(k) (see Thm. 2 in [10]), from
which one can obtain D(k;β) at different resolutions (as a
function of Ak).

To obtain a constant level of statistical detectability (KL
divergence D) after resizing by factor k, the change rate β
needs to be scaled by α(k): D(1;β) = D(k;α(k)β). Since
we always central-crop the image after resizing to the same
size n (and thus eliminate the effect of the SRL) it is easy to
see that α(k) =

√
I(1)/I(k). In Figure 4 (left), we show the

computed values of the parameter α(k) for a range of scal-
ing factors k ∈ [1, 3]. These theoretically obtained results
were verified in the following manner. For a fixed change
rate β, we first steganalyzed LSBM using the feature vector
described in Sec. 3.3, obtaining thus the median testing error
PE(1, β). Next, according to the theory, the same error rate,
PE(k, α(k)β), should be obtained after resizing the image by
the factor k and modifying the change rate β to α(k)β, pro-
vided the images at both resolutions are cropped to the same
dimensions (otherwise, another change rate adjustment due
to the SRL would be needed). In Figure 4 (right), we show
the results for several values of β for k = 2. Despite the
simplicity of the cover model (6) and the fact that we use a
machine-learning based detector, an excellent match between
theory and practice is observed. We plan to include more ex-
perimental results in a journal version of this paper.
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Fig. 4. Left: Derived scaling factor α(k) =
√
I(1)/I(k);

Right: testing error PE(2, α(2)β) on images resized by factor
k = 2 embedded with change rate α(2)β vs. PE(1, β) for
non-resized images (k = 1) embedded with change rate β for
the following range of values of β = {0.01, 0.02, . . . , 0.11}
(α(2) ≈ 4.53). See the text for more details.

5. CONCLUSIONS AND RELATION TO PRIOR ART

To the best knowledge of the authors the role of the image re-
sizing algorithm and its influence on steganography and ste-
ganalysis has not been studied so far. This paper is the first
step in this direction, and it reveals a surprising sensitivity of
steganalysis to the choice of the interpolation kernel, as well
as the exact position of the first pixel of the resized image,
which affects the alignment of both pixel grids and conse-
quently the strength of the correlations among individual pix-
els.

Resizing an image is a very different operation from crop-
ping or concatenating images because the statistical proper-
ties of pixels change. Thus, the standard scaling of secure
payload as stated by the square root law is no longer valid.
To obtain a better understanding of this phenomenon, we the-
oretically analyzed the simplest resizing algorithm with the
box kernel (the nearest neighbor interpolation). Adopting
a Markov chain model for image pixels, we were able to
compute the steganographic Fisher information rate, which
allowed us to derive the scaling of the secure payload that
should lead to constant statistical detectability under resizing.

Studying the impacts of image resizing on statistical
properties of pixels is significant for practitioners because
steganography and steganalysis are nowadays commonly
benchmarked on image sets obtained by resizing full-
resolution images (e.g., the BOSSbase).

The authors are preparing an expanded journal version of
this article that will include the study of the effects of resiz-
ing with antialiasing as well as a more detailed study of the
scaling law.
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