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ABSTRACT

 

 

We examine the problem of estimating the frequency of a 

three-phase power system in an adaptive and low-cost 

manner when the voltage readings are contaminated with 

observational error and noise. We assume a widely-linear 

predictive model for the    complex signal of the system 

that is given by Clarke’s transform. The system frequency is 

estimated using the parameters of this model. In order to 

estimate the model parameters while compensating for noise 

in both input and output of the model, we utilize the notions 

of total least-squares fitting and gradient-descent 

optimization. The outcome is an augmented gradient-

descent total least-squares (AGDTLS) algorithm that has a 

computational complexity comparable to that of the 

complex least mean square (CLMS) and the augmented 

CLMS (ACLMS) algorithms. Simulation results 

demonstrate that the proposed algorithm provides 

significantly improved frequency estimation performance 

compared with CLMS and ACLMS when the measured 

voltages are noisy and especially in unbalanced systems. 

 

Index Terms—adaptive frequency estimation, gradient-

descent optimization, smart grids, total least-squares, 

widely-linear modeling. 

 

1. INTRODUCTION 

 

Smart grids collect and act on information regarding the 

behavior of the consumers and suppliers in an automated 

manner to enhance the efficiency, reliability, economy, and 

sustainability of the generation, distribution, and 

consumption of electrical energy [1]. 

System frequency is amongst the most important and 

sensitive parameters to be constantly monitored in the smart 

grids. Accurate power frequency estimation is crucial to 

check the health state of the power grid and assures reliable 

measurement of other system parameters such as voltages, 
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currents, and active and reactive powers. Market economy 

will presumably drive power systems to operate much closer 

to their limits necessitating a perfect generation-load 

balance. Deviation of the system frequency from its rated 

value faithfully portrays an imbalance between the power 

generation and load demand. Accordingly, many power-

system protection-and-control applications require accurate 

and fast estimation of the system frequency. An erroneous 

frequency estimate can result in insufficient load shedding 

by frequency relays, which in turn may ultimately cause a 

catastrophic grid failure [2]. 

Research on frequency estimation of power systems has 

been conducted for decades generating a copious body of 

literature (e.g., see [2]-[22] and references therein). Several 

methods have been proposed to estimate the power system 

frequency based on zero-crossing technique [4], phase-

locked loop [5]-[8], least-squares adaptive filtering [9]-[11], 

and extended Kalman filter [12]-[14], to name a few. Most 

of these methods rely on the voltage readings of a single 

phase of the system. In three-phase systems, none of the 

single phases can necessarily characterize the whole system 

and its properties. Therefore, a robust frequency estimator 

should take into account the information of all three phases 

[15]-[18]. Applying Clark’s transform (also known as    

transform), a single complex signal can be used to 

encompass the three-phase information [19]. It has been 

shown that the frequency of the three-phase power system 

can be estimated using a linear predictive model for this 

complex signal (   signal) [20], [21]. However, since the 

   signal is improper (its real and imaginary parts have 

different statistical properties) [22]-[24] when the system is 

unbalanced (e.g., phases feature different peak voltages), it 

is better described via a widely-linear model rather than a 

strictly-linear one [25], [26]. 

In [21], an algorithm for frequency estimation of three-

phase power systems utilizing the    signal is developed 

based on the widely-linear (augmented) complex least mean 

square (ACLMS) algorithm [27]. In unbalanced situations, 

this algorithm significantly outperforms its strictly-linear 

counterpart proposed in [20], which is based on the complex 

least mean square (CLMS) algorithm [28], while enjoying 

the simplicity and numerical stability of the LMS-type 

algorithms. However, it assumes a noise-free environment, 
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i.e., where the voltage measurements are exact and error-

free. Such assumptions are often unrealistic since several 

kinds of error can contaminate the measurements, e.g., 

sampling, quantization, and instrument errors. Therefore, in 

practice, this algorithm may have a poor estimation 

performance because of failing to account for the error in 

the signals. 

Total least-squares (TLS) is a fitting method that 

improves the accuracy of the least-squares estimation 

techniques when both the input and output data of a linear 

system are subject to observational error. TLS minimizes 

the perturbation in the input and output data that is required 

to fit the input to the output [29]-[31]. 

In this paper, we develop a frequency estimation 

algorithm for three-phase power systems assuming noisy 

phase voltage observations. To this end, we utilize the 

concepts of TLS fitting and gradient-descent optimization to 

compute the parameters of a widely-linear predictive model 

considered for the    signal. The system frequency is then 

calculated using the model parameters. Simulations testify 

that the performance of the new algorithm is superior to that 

of the ACLMS algorithm when the phase voltages are 

measured in noise while being almost as computationally 

efficient as ACLMS. 

 

2. PROPOSED ALGORITHM 

 

The voltages of a three-phase power system can be 

represented as 
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frequency,   is the sampling interval,   is the time index and 
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  denote the 

observational errors and noises. 

Using Clarke’s (  ) transform [19], i.e., 
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we obtain a complex-valued voltage signal as 

     
     

 
 

that can be used for adaptive frequency estimation [32], 

[33]. Here,   √  . 

A widely-linear predictive model for    is described as 
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where  ̃  is the noiseless value of   , i.e., when   
    

  
  
   , and superscript   denotes complex-conjugate while 

  and   are the model parameters that we wish to identify. It 

is shown in [21] that, using   and  , the system frequency 

can be estimated as 

 ̂  
 

   
     (√  ( )  | | ) 

where  ( ) and | | denote the imaginary part and the 

absolute value, respectively. 

In order to identify   and   at the presence of noise, we 

utilize an adaptive filter whose tap weights vector, denoted 

by    [         ]
 
, is taken as an estimate for [   ]  at 

iteration  . We wish to compute    such that it fits the filter 

input data to the desired filter output data by incurring 

minimum perturbation: 

 (  
    )         (1) 

where 

   [            ], 
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 , 

   [         
 ] , 

superscript   stands for transpose, and     
    and 

    
    denote the minimum input and output 

perturbations, respectively. Using the singular value 

decomposition (SVD) of the augmented data matrix, 
[  
    ], the total least-squares (TLS) solution for (1) is 

given by [31] 
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where [              ]
 
 is the right singular vector 

corresponding to the smallest singular value of [  
    ] or 

the eigenvector corresponding to the smallest eigenvalue of 
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The solution of (2) is optimal. However, obtaining it 

comes at the expense of updating and performing 

eigendecomposition of the     matrix,   , at each 

iteration. In the light of the analysis of [31], a 

computationally more efficient alternative approach can be 

devised by minimizing the following cost function over 

      : 
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which can also be written as 
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where ‖ ‖ denotes the Euclidean norm. 

Assuming that the noises are stationary correlation-

ergodic and the sampling interval is considerably smaller 

than the voltage period, i.e.,      , we can conclude that 

  
     ,        , are also correlation-ergodic. 

Consequently, we may replace the time-average in (3) with 

ensemble-average and obtain the following alternative cost 

function: 
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Observe that  ( ) is in fact the Rayleigh quotient of 
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with argument [     ]  and reaches its minimum value 

     (the smallest eigenvalue of  ) when [     ]  is the 

eigenvector corresponding to      [34]-[36]. 

It is known that the critical points of the Rayleigh 

quotient cost function,  ( ), are the eigenvectors of   and 

the critical values of  ( ) are the eigenvalues of  . 

Moreover,      is the only stable critical value (local and 

global minimum) of  ( ). As a result, the minimizer of 

  ( ) is unique and the global minimum of   ( ) can be 

reached using the gradient-descent method from any initial 

point given the choice of an appropriate step-size [34]-[37]. 

The gradient of the cost function is calculated as 
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where superscript   denotes complex-conjugate transpose. 

Subsequently, a gradient-descent total least-squares estimate 

of the sought-after parameters can be iteratively achieved as 
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and     is the step-size parameter. Accordingly, the 

system frequency is adaptively estimated as 

 ̂  
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We call the new algorithm, which is based on a widely-

linear model, augmented gradient-descent total least-

squares (AGDTLS). 

 

3. NUMERICAL STUDIES 

 

We consider a three-phase power system where     , 

        , and the noises (  
 ,   

 , and   
 ) are zero-

mean white Gaussian with variance   
 . We use two metrics 

to quantify and compare the steady-state frequency 

estimation performance of different algorithms, the bias that 

is defined as | [ ̂ ]   | and the root mean-squared error 

(RMSE) that is defined as 

√ [( ̂   )
 
]. 

We evaluate the expectations by averaging over     steady-

state values and ensemble-averaging over     independent 

trials. 

In Figs. 1 and 2, we compare the performance of the 

complex least mean square (CLMS) [20], augmented 

complex least mean square (ACLMS) [21], and AGDTLS 

algorithms by plotting the bias and RMSE against   
  when 

the system is balanced, i.e.,   
    

    
   . We adjust 

the step-sizes to yield identical initial convergence rates for 

all the algorithms. Fig. 1 shows that CLMS has a smaller 

bias than the widely-linear algorithms when dealing with a 

balanced system in a noisy environment. This can be 

attributed to the fact that widely-linear algorithms 

overmodel the problem when the system is balanced. They 

have one extra parameter that only serves to amplify the 

noise, hence deteriorate the performance when the system is 

balanced and    is proper. However, in this case, AGDTLS 

is superior to ACLMS and outperforms CLMS in terms of 

RMSE. 

In Figs. 3 and 4, we compare the performance of the 

algorithms when the system is unbalanced such that 

  
     ,   

     , and   
   . The other parameters are 

the same as before. Figs. 3 and 4 show that, similar to the 

balanced case, AGDTLS significantly outperforms ACLMS 

when the system is unbalanced. Moreover, we observe that 

for an unbalanced system, widely-linear modeling generally 

results in a better estimation performance, especially when 

the noises have relatively small variances, viz., less than 

      for ACLMS and less than      for AGDTLS in the 

simulated scenario. When the variance of the noises is 

higher than these values, the strictly-linear algorithm, 

CLMS, approaches and surpasses the widely-linear 

algorithms in terms of bias performance. Nevertheless, at 

such points, all the considered algorithms exhibit a poor and 
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unreliable performance soliciting more sophisticated and 

accurate methods such as the widely-linear complex Kalman 

filter [38]. 

 

4. CONCLUSION 

 

We have developed an adaptive frequency estimation 

algorithm for three-phase power systems by assuming a 

widely-linear predictive model for the system’s    complex 

signal generated by Clarke’s transform and finding a total 

least-squares fit via the gradient-descent method. The 

proposed algorithm has the same order of computational 

complexity as the complex least mean square (CLMS) and 

the augmented complex least mean square (ACLMS) 

algorithms and, as verified by the simulation results, 

outperforms CLMS and ACLMS when the system voltage 

signals are observed in noise. 
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