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ABSTRACT

Signal processing has been proven to be an useful tool to charac-
terize damaged materials under ultrasonic nondestructive evaluation.
In this work, we hypothesize that the transfer function of multilay-
ered materials for a through-transmission configuration can be repre-
sented as a classical all-pole model with sparse coefficients. To test
this hypothesis, we propose an analysis-by-synthesis scheme which,
by assuming an underlying sparse digital signal model of the speci-
men, infers the order and extent of the model parameters correspond-
ing to a certain impact damage level. Then, we exploit the sparse
structure of the obtained digital filter for practical NDE applications,
with emphasis on impact damage identification of carbon-fiber rein-
forced polymer plates.

Index Terms— Signal processing, sparse signal modeling, all-
pole filter, non-destructive evaluation, ultrasonics

1. INTRODUCTION

Carbon-fiber reinforced polymers (CFRP) are high performance ad-
vanced materials with a growing applicability due to their extreme
strength-to-weight and rigidity-to-weight efficiency ratios. One of
the major concerns associated with composites is their vulnerabil-
ity to impact damage, which may occur in the phase of manufac-
turing, service or maintenance. During an impact the fibers absorb
part of the energy and distribute some of the load through the lam-
inate thickness. This excess of energy may lead to delamination,
sub-surface matrix cracking, fiber-matrix debonding and fiber frac-
ture [1], which in turn can induce severe degradation in the residual
material mechanical properties, while remaining invisible from the
surface. Thus, non-destructive evaluation (NDE) techniques are re-
quired to discriminate between the different failure mechanisms in
composites and to guarantee their reliability. Among them, ultrason-
ics are currently one of the most frequently used NDE techniques
that have been proven to provide effective results at relatively low
cost for the purpose of identifying and quantifying CFRP laminates
impact damage [2].

Due to their structural complexity, composites require special
treatment in ultrasonic signal interpretation. The random nature of
the signal generation, the imperfections of the acquisition system,
as well as the difficulties in understanding ultrasonic echoes moti-
vate the use of signal processing techniques [3]. Thus, an essential
element in NDE systems is the analysis of the captured signal, by
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means of a robust parameter extraction, to obtain relevant informa-
tion from the tested specimen. First work devoted to ultrasonic NDE
of materials focused on deconvolution [4], and on filtering tech-
niques for noise reduction [5]. Later developments in this field have
been successfully extended to advanced materials, such as compos-
ites. In particular, the cepstrum has been used for ultrasound sig-
nal characterization due to its deconvolution properties [6, 7]. Other
related proposals dealt with the extraction of wavelet coefficients
for ultrasonic NDE of composite material structures [8]. Recently,
the split spectrum processing (SSP) technique and the expectation-
maximization (EM) algorithm have been proposed for their ability
to resolve echoes associated with delaminations in CFRP detected
by ultrasonic methods [9]. However, most of the aforementioned
studies deal with the simple detection of damages. Thus, the final
step of the system is limited to a binary classification between dam-
aged/undamaged states. This consumes a huge amount of experi-
mental data and requires an expensive training process, but does not
provide any quantification of the damage level and location. More-
over, most of the signal processing techniques are applied in an
heuristic way, without bridging the extracted parameters to the ma-
terial properties.

This study presents a digital signal model H(z) to characterize
the specimen being tested. An important point of this proposal is to
provide a model with a small number of parameters, since low com-
plexity models are desirable for fast, practical and accurate NDE
systems. To this end, we assume that the model parameters have
a particular sparse distribution, which may be inherently related to
the material’s mechanical and geometrical properties, and thus to
its health state. This hypothesis is based on the conclusions from
our previous work [10], where we introduced two different digital
signal models based on a simplified physical analysis of the ultra-
sonic wave propagation inside a CFRP plate. Results showed that
cepstra extracted from these models, in which coefficients were dis-
tributed at several lags, were more discriminative than other spectral
estimation methods. In the present work, we propose an analysis-
by-synthesis scheme, which compares the predicted signals with the
ones obtained from laboratory experiments conducted on a CFRP
plate [11]. In such a way, by means of a minimization procedure,
we obtain the optimal order and extent of the model parameters,
and thus show that a sparse signal model may be an useful tool to
model wave propagation phenomena in multilayered materials. To
our knowledge, our study draws for the first time a parallel between
sparse signal modeling and its applications to ultrasonic NDE signal
processing.

The remainder of the paper is organized as follows: Section 2
outlines the main aspects of the proposed methodology. Section 3
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Fig. 1. Experimental configuration of the excitation-propagation-
measurement system.

presents the results obtained from the analysis-by-synthesis stage,
and validates them with a damage recognition experiment, while
Section 4 discusses the feasibility of this modeling, concluding with
ongoing work issues.

2. MATERIAL AND METHODS

The proposed methodology consists of three elements: The (1) sig-
nal acquisition of the ultrasonic signals obtained from the wave in-
teractions with a CFRP plate, a (2) sparse signal model that idealizes
the ultrasound-composite interactions, and is solved by the Prony’s
method, and an (3) analysis-by-synthesis scheme, which is used to
predict the optimal coefficient positions corresponding to a certain
damage level.

2.1. Experimental setup

The specimen tested is a CFRP symmetric plate that consists of five
layers. Damages were generated by applying several free-fall im-
pact energies (0.388, 0.674, 1.313, 2.280, and 5.385 Joules) [11],
varying the mass and height of each impactor to obtain five relevant
damage locations. The specimen was excited by a low-frequency
ultrasonic sine-burst at a central frequency of 5 MHz, consisting of
one cycle of 0.2 µs and 5 Vpp amplitude. This excitation signal was
generated by an arbitrary wave generator (Agilent 33220). The re-
sponse signals were registered during 10 µs, that is, up to the time for
which there were no more reflections from the specimen/transducers
interfaces. The response signals were sampled with a high resolution
A/D converter after 40 dB pre-amplification stage, applying a sam-
pling frequency of Fs = 200 MHz, providing N = 2000 samples,
which were uniformly quantized with 12 bits.

Initially, the response signal was measured at the undamaged
location for calibration. Then, the measurement procedure was re-
peated Nr = 10 times on each location (labeled from 0 to 5), to
generate a relevant data set that accounts for the uncertainties due
to the variability of the transducers alignment with respect to the
impact location. Each of these measurements corresponds to the re-
sulting average of 300 captures of the signal, providing an effective
reduction of noise for the detected response signal, increasing the
signal-to-noise ratio around 25 dB. Figure 1 depicts the experimen-
tal setup used to register the ultrasonic signals.

2.2. Sparse signal model

In this work, we propose a digital signal model for wave propagation
in multilayered materials. A through-transmission configuration is
adopted, representative of the successive reflections that suffer the
transmitted signal between layers and specimen/transducers inter-
faces. In first place, the through-transmission configuration is con-
sidered as a discrete-time linear system. Thus, the material under
investigation can be represented by a transfer function, which relates
the discrete excitation and response signals [12]. Our proposal ex-
tends the intuitive physics-based all-pole signal model proposed by
Fuentes et al. [10], solely inspired by concepts drawn from signal
theory. In [10], the authors presented a simplified analysis of the
complex wave propagation pattern within the plate, and showed that
the model of the damaged specimen could be improved by including
a fixed virtual interface which introduces a middle-term and long-
term predictor, along with the typical short term predictor, in the
transfer function. This model can effectively account for the mul-
tiple transmissions/reflections due to the multilayered structure and
the damage. This sparse-like distribution of the model coefficients is
exploited in our proposal.

However, it must be considered that the structural complexity
of the material suggests that flaws may occur at different locations,
and that a single virtual interface cannot account for all possible fail-
ure mechanisms. Moreover, a fixed interface does not respond to
the phenomena associated with crack propagation due to increasing
damage energies. Thus, it is reasonable to assume that a multilayered
material can be modeled with a sparse transfer function, whose pre-
diction coefficients behave dynamically, depending upon its damage
state. We thus assume that the discrete-time transfer function H(z),
which represents a multilayered composite material in a through-
transmission configuration, can be represented by a delayed classical
all-pole filter with sparse coefficients,

H(z) =
bz−M

1 +

p∑

k=1

akz−k (1)

where most of the coefficients ak are zeros. The polynomial order
p of the denominator is 2M , where M corresponds to a sample de-
lay equivalent to the time needed by the incident wave to cross the
total thickness of the multilayered structure [10]. As experimentally
observed, the numerator consists of a gain b plus a total thickness-
equivalent sample delay M .

2.3. Analysis-by-synthesis scheme

The final goal of NDE systems is to provide consistent damage in-
formation that characterizes the specimen health state. Our proposal
suggests that the underlying mechanical properties of the specimen
are inherently associated to the sparse prediction coefficients ak of
the denominator in Equation (1). Thus, one may assume that dam-
age will affect those coefficients both in amplitudes and positions.
Provided the coefficient position vector k, Prony’s method allows us
to obtain the optimal amplitudes for a filter with a given input/output
signals. Unfortunately, there is no method that provides both optimal
positions and amplitudes. Thus, we apply an analysis-by-synthesis
scheme to find the values of the coefficient position vector k that best
fit the experimental response signals y(C)(n), as depicted in Figure
2.

Given the transfer function H(C)(z) corresponding to a certain
damage class C ∈ [0 − 5], the excitation signal x(n) applied to the
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Fig. 2. Analysis-by-synthesis scheme for a damage class C.

specimen can be filtered, resulting in an approximation y
(C)
H (n) of

the experimental response signal y(C)(n) measured from the spec-
imen, and corresponding to the same damage class C. Generally,
the model coefficients are found such that the 2-norm of the residual
r(n) (the difference between the observed signal and the predicted
one) is minimized. In this case, since H(C)(z) is an all-pole filter
with sparse coefficients, we can reasonably assume that the optimal
predictor is not the one that only minimizes the 2-norm but the one
that also leaves the fewest non-zero prediction coefficients, i.e. the
sparsest one. Sparsity is often measured as the cardinality, that is the
so-called 0-norm [13, 14]. Thus, the specimen can be analyzed by
defining a modeling error (or energy) in terms of the mean squared
error between the actual response signal y(C)(n) and the modeled
response y

(C)
H (n), plus a sparsity term that accounts for the number

of non-zeros coefficients in the transfer function,

f (C) = ||r(C)||22 + γ||a(C)||0 (2)

where γ is an empirical regularization term, defined so that the mod-
eling error due to the sparsity term corresponds to a certain amount
of the least squared error. It is noteworthy that setting γ = 0 leads
to a standard linear prediction form. To account for all the Nr mea-
surement repetitions within a damage class C, a slightly different
cost functional g(C) is introduced as,

g(C) =
1

Nr

Nr∑
i=1

f
(C)
i (3)

Then, the parameters k that characterize the coefficient positions are
found by a search algorithm that minimizes the cost functional g(C),

k̂ = arg min
k

g(C)
(4)

Binary genetic algorithms [15] are applied to minimize Equation (4),
and provide the analysis-by-synthesis optimal solution.

3. EXPERIMENTAL RESULTS

3.1. Analysis-by-synthesis solutions

This section presents the results obtained from the analysis-by-
synthesis stage for the optimal position k of the prediction coeffi-
cient vector a corresponding to each damage class C. In order to
reduce part of the noise and focus on the frequency band of interest,
the experimental response signals y(n) have been previously dec-
imated to Fs = 25 MHz (250 samples). For the specimen tested,

the resulting thickness equivalent sample delay is M = 14. The
simulations have been performed for a wide range of regularization
terms γ ∈ [3− 8] · 10−5. Table 1 summarizes the optimal results.

As can be observed, the coefficient position vector k changes
slightly from one damage level to the next one. Some coefficients
vanish and/or appear at new positions, due to the symmetry break
of the plate structure. It is worth to point out that diagonal patterns
which appear along increasing damage levels (e.g. from positions 13
to 18 and from 16 to 21) may be related to wave velocity reductions,
i.e. to stiffness reduction of the specimen layers. Unfortunately, a
direct physical interpretation from the ak-domain is not easily as-
sessable.

3.2. Damage recognition experiment

To evaluate the discriminative capability of the proposed model, a
set of experiments have been carried out. For this task, a damage
recognition system based on cepstral distances is developed. As in
[10, 16], each experiment has been previously preprocessed with a
Hamming window of 250 samples in the time-domain. The tested
techniques employ the real cepstrum c(n), which is defined as,

log |H(ω)| =

∞∑
n=−∞

c(n)ejωn (5)

where H(ω) is the spectrum estimate obtained from the signal
model. Precisely, the way the spectrum is estimated characterizes
each applied technique. Thus, the approach called Real cepstrum
consists of using the periodogram obtained directly from the win-
dowed signal, and corresponds to our baseline (i.e. non-parametric
technique). The technique labeled as LPC cepstrum is based on the
use of a standard all-pole model with order p = 28, as described in
our previous works [10, 16]. Finally, the method named Dynamic
cesptrum is based on the sparse signal model described by Equation
(1), and whose coefficient positions k were determined according to
the optimal results depicted in Table 1.

For an optimal use of the available data set, the training/test is
performed using the leaving-one-out technique. Therefore, 9 sig-
nals are used to train a reference cepstral vector corresponding to
a certain damage level, while the remaining signal is used for test.
Rotating the measurements enables us to train the system always
with 9 signals, while testing is performed over 6× 10 = 60 signals.
The performance of the system is measured through a weighted error
factor. Let the results of the test be a confusion table R(i, j), with
i, j = 1, . . . , 6, where R(i, j) represents the number of measure-
ments at damage level i that have been classified as a damage level
j. The weighted error factor is then defined as,

werr[%] = 100×
∑6

i=1

∑6
j=1 R(i, j) · |i−j|

3

60
(6)

Thus, when the erroneously recognized class corresponds to a dam-
age close to that of the correct class, the error has less influence on
the error rate. Table 2 shows the results obtained for the different
cepstrum-based techniques, along with our proposal. As can be ob-
served, minimal weighted and absolute errors (1.67 % and 3 %, re-
spectively) are obtained with the dynamic approach. It is also worth
to note that a sparse modeling, with a lower number of parameters,
has a better discriminative capability than classical spectrum estima-
tion approaches.
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Damage level ak-coefficient positions NZ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Damage 0 15
Damage 1 15
Damage 2 14
Damage 3 13
Damage 4 14
Damage 5 19

Table 1. Analysis-by-synthesis optimal solution for the positions of the non-zero coefficients ak (indicated by grey cells), along with the
number of non-zero (NZ) coefficients (γ = 6e− 5).

Cepstrum-based Number of werr err
techniques non-zero ak [%] [%]

Real cepstrum − 8.33 23.33
LPC cepstrum 28 2.00 6.67

Dynamic cepstrum 13− 19 1.67 3

Table 2. Classification errors for different cepstrum-based tech-
niques.

4. CONCLUSIONS

This study shows the capability of a sparse signal modeling to dis-
criminate the damage level of a CFRP plate subjected to different im-
pact energies. First, an analysis-by-synthesis scheme has been pro-
posed, to infer the order and extent of the model parameters corre-
sponding to a certain impact damage level. Then, the performance of
the proposed parametrization has been evaluated by a system based
on cepstral distances that recognizes the specific damage level cor-
responding to a given test signal, leading to the following conclu-
sions: (1) It has been demonstrated that modeling the complex wave
propagation pattern using a sparse transfer function provides better
results than other classical spectrum estimation techniques. (2) It has
been shown that the prediction coefficients behave dynamically, de-
pending upon the damage state of the material. Ongoing works may
include a further study of the relation between the sparse prediction
coefficients and the underlying material mechanical properties, in or-
der to provide a consistent quantification of the damage parameters.
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