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Abstract—A voltage/current transient typically caused by
islanding and switching operations is treated as an adverse
phenomenon that degrades power quality, and it may cause
damage to electrical equipment. Therefore, a reliable system
should effectively detect and monitor a transient disturbance.
In this paper, the transient detection problem is formulated
as a binary hypothesis test: normal signal (null) vs. transient
(alternative). The sampled data is described by a sinusoid
under the null hypothesis, while a sum of damped sinusoids is
utilized to model the alternative one. As no prior knowledge is
imposed on complex amplitudes, frequencies, or damping factors
in signal modeling, the general likelihood ratio test (GLRT) is
employed to fulfill the task. To reduce computational complexity,
the maximum likelihood estimator is replaced by ESPRIT for
parameter estimation. Probability of detection of 0.98 is achieved
at a SNR of 27dB and probability of false alarm of 0.0005.

Index Terms—Power system transients, detection algorithms,
maximum likelihood estimation

I. INTRODUCTION

A transient refers to a short time voltage/current disturbance
from one steady-state into another, and it is attributed to
a sudden load and generation mismatch on the distribution
network [1]-[7]. Even though some natural phenomena such as
lightning can occasionally cause transient, majority of them are
internally generated: load switching, breaker switching, fuse
disconnection, short-circuit, and islanding [1]. The amount
of voltage/current change is case dependent. For example,
a short-circuit may bring on a large current increase in a
faulted area of the system. The cumulative effect of transients
is treated as a major threat to delicate semiconductors, which
have been extensively integrated into modern electric systems.
As a consequence, the whole power system nowadays becomes
less tolerant of transient disturbances [2].

Transient is one of the unfavorable factors that degrade
the power quality, and it has attracted many efforts in the
last twenty years. For example, a power transient due to
load switching is comprehensively summarized in [1], and
spectrum analysis of transients is presented in [2]. A general
categorization of transients based on their reasons is discussed
in [3]. The difference between the voltage transient and voltage
sag is investigated in [4]. Statistically, those works are either
nonparametric or parametric. The former does not impose any
structure conjecture on observations, and classic approaches
include Fourier and wavelet transforms base spectrum anal-
ysis [2] [8]. Nonparametric approaches are computationally
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friendly; however, they may subject to the constraint of low
resolution or to the difficulty of signature explanation [2]
[4]. Since electric circuits can be described by differential
equations, a sum of damped sinusoids becomes a popular
approach to parametrically model power transients [3]-[6].
A parametric approach offers an opportunity to accurately
extract individually (damped) sinusoidal components from
contaminated observations, and it may further benefit diagnose
and failure identification of a power system [7].

The previous publications focus on theoretical analysis,
parameter estimation, and classification of transients, while
this paper addresses transient detection, which has not been
widely attended to the best of our knowledge. The detection
problem will be parametrically investigated. Intuitively, detec-
tion action is to statistically conjecture whether the interested
part of a power system is normal via properly utilizing noisy
observations. Decision results can be used to trigger protection
signals, or, they can provide an insight to the stability of a
power system [2].

In this paper, we formulate the transient detection problem
as a binary hypothesis test, and derive a general likelihood ra-
tio test (GLRT). The GLRT involves the maximum likelihood
estimation (MLE) of unknown model parameters; its computa-
tional complexity is high. Therefore, we suggest the utilization
of the ESPRIT algorithm [9] to replace the MLE in parameter
estimation. As a supplementary contribution, we prove that
the ESPRIT approach—a typically stationary signal processing
tool—is theoretically applicable for the parameter estimation
of the nonstationary sum of damped sinusoids. This analysis
has not appeared anywhere else based on our knowledge. Note
that our method does not require any prior knowledge of the
fundamental frequency, initial phase, or amplitude. Therefore,
its performance is preserved under nonideal situations such as
frequency deviation.

The rest of this paper follows: Section II states the binary
detection problem and gives the signal model; Section III
implements the GLRT; numerical results are shown in Section
1V, while the conclusions are drawn after that.

II. PROBLEM STATEMENT

We are interested in a single-phase power system in this
paper, and the extension to a three-phase system is straight-
forward. Under normal conditions, the sampled voltage/current
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signal is sinusoid
y(n) = age’"" +v(n), e

where n is an integer representing the sampling index, ag
denotes the complex amplitude (a product of the amplitude
and the initial phase) of the fundamental frequency compo-
nent, v(n) represents the receiver noise, and wy denotes the
normalized fundamental frequency. The analogy fundamental
frequency &y can be obtained via

N

Wo @)
where At denotes the sampling interval. Note that as signal
models for voltage and current are mathematically identical,
no separate discussion will be further offered.

If the power system suffers from disturbances such as
load switching and islanding, the voltage/current signal will
undergo certain kind of transient. Generally, these transients
can be modeled as a sum of damped sinusoids [3]-[5]

M
y(n) = Z a;e”VimeI¥im 1 y(n), 3)

i=1

where ; > 0 and w; denote the normalized damping factor
and the normalized frequency, respectively, for the ith com-
ponents, a; is the complex amplitude, and M > 0 counts
the number of sinusoids. The analogy damping factor 7; and
transient frequency w; can be similarly obtained as that in (2).
Note that we set e/~ =£ ¢I“k =Y for i # k in (3) to avoid
model trivialness.

The transient detection problem can now be formulated as
a binary hypothesis test

Ho : y(n) = age?™*™ + v(n)

= . @)
Hi:y(n) = Zaie_“"ej“’i” +v(n).
i=1

Suppose that the total number of samples is V. Defining y =
[y(o)vy(l)a T 7y(N - 1)]T and v = [U(0)7U(1)7 T 7U(N -
1)]T, hence the binary hypothesis test can be compactly
expressed in matrix format

Ho:y = ageg +v

5
iy = C(N,Ma+v, ®

where a = [ay,as, - ,ap]T collects complex amplitudes,
eo = [1,e7%0, ... efwoN=D1T and

1 ... 1
eJwi—m eJwM —TMm
C(N,M)=
w1 =) (N=1) e —7ar) (N—=1)
(6
is a full rank Vandermonde matrix [10], where N and M
denote the total numbers of rows and columns, respectively.
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(a) The original signal and its three (b) The reconstructed signal and its
components three estimated components

Fig. 1. Parameter estimation of a sum of damped sinusoids with ESPRIT
algorithm : (a) the original signal and its three components, (b) the recon-
structed signal and the estimates of its three components. The first component
is responsible for the fundamental frequency, which is set as 60 Hz for this
example. The SNR between the first component and the noise is 30 dB.

III. GENERAL LIKELIHOOD RATIO TEST (GLRT)

In this paper, a, w;, v;, and M are unknown. Let v be a
zero-mean complex Gaussian random vector with distribution

v~ CN(0,6*Iy), @)

where J is responsible for the standard deviation. The detection
problem can be solved via GLRT

max f(y|6o, Ho) 4,
L I—— 8
Iréax fy|61,H1) 751 ©

where T is the threshold, f(-|-) denotes the likelihood func-
tion, g = {ap,wo} is the parameter set for the null hypothe-
sis, and 01 = {a,w;,v;, M, where 1 < i < M} denotes that
for the alternative one.

A. Estimation of 0 for Hg
As the likelihood function of y under the null hypothesis is
1 7(9—0060)12(2;—&0&0)

f(yl6o, Ho) = P ) g ) &)

the maximum likelihood estimate of @, can be obtained via

0y = arg max f(yl6o, Ho)
0

= argmax In f(y|600, Ho) (10

= arg n;in (y — apeo) (y — apep),

0
Apparently, (10) is a nonlinear quadratic least-square problem,
and gradient based approaches can be used to obtain a feasible

estimate.

B. Estimation of 6 for H,

As the number of damped sinusoids is unknown, model
order estimation must be performed before the MLE. Various
techniques are available in literature [11], and the maximum
description length (MDL) based one is adopted in this paper.
Define the partial data segment vector as

r(n, K) =[y(n),y(n+1), - ,y(n+ K -7, (1)
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Fig. 2. The reconstruction root mean squared error (RMSE) as a function

of SNR for the ESPRIT algorithm. 1000 Monte Carlo runs are used to obtain
each point of the curve.

where n indicates the start index, and K represents its length,
and hence the estimate of the covariance matrix is

1 N-K
> H
R= b iy n;) r(n, K)rf(n, K), (12)

where (N — K + 1) denotes the total number of segment
vectors. Suppose that the eigenvalues of R are

(1>G > >(k, (13)
and then the MDL criterion is formulated as [12]
HK C%”‘ (K—=p)(N—K+1)
MDL(p) = — In [ =220
1 K
K—p Zi:erl Gi
1

+ 5])(2[( —p)In(N — K + 1), (14)

where 0 < p < K — 1. If K is properly selected, namely
K > M, MDL(p) is firstly decreasing and then increasing.
The optimal estimate of M can be uniquely obtained via

M= (argm;n MDL(p)) 1 (15)
Practically, an initial guess of K is desirable as one does
not know the exact value of M. If the obtained MDL(p)
is a monotonically decreasing function of p, an increasing
adjustment for K is necessary.

With M , the likelihood function under the alternative hy-
pothesis becomes

1 _w—cw,ma)H (y—cw,ma)
o2

f(yl6r,Hi) = NN € .

and hence the MLE of 6, can be obtained via

(16)

0, = arg max f(yl01,Hy)

= argrr(_l)in (y — C(N,M)a)" (y — C(N,M)a).

Obviously, the optimization problem here is also a nonlinear
least-quare.

C. Parameter Estimation with ESPRIT

The MLE involves the search of nonlinear parameter space,
and its computational complexity is high. Here, we suggest to
use the ESPRIT algorithm to replace the MLE in the GLRT.
It is well know that the ESPRIT algorithm is suitable for the
stationary rather than nonstationary signal processing [9]. We
show that ESPRIT still works for parameter estimation of a
sum of damped sinusoids, even though the signal itself is
nonstationary. Due to a page limitation, we can’t share our
theoretical proof here.

The realization of ESPRIT algorithm is quite standard [3]
[5] [9]. A brief description of its implementation follows:

ESPRIT Algorithm

1) Obtain the estimate of covariance matrix R via (12).

2) Obtain the eigenvalues, say (;, and their corresponding
eigenvectors, say s;, of R, where ¢;’s are in a decreasing
order.

3) Define S = [sy,82,---,8;), and then calculate the
its up-submatrix S, = [I(x_;) 0]S and its down-
submatrix Sg = [0 I(x_1)]S.

4) Obtain the eigenvalues of matrix (S27S,)~1S¥ 8, say
&’s. Then, the estimates of the normalized frequency
and the damping factor both corresponding to &; are

@; = angle(§;) and 4; = —In(|&]), 17

respectively.
5) Employ @;’s and 4;’s to construct the estimate of

C(N, M), and hence the estimate of a can be calculated
via least-square

a= (éH(N, M)C(N, M))iléH(N, M)y. (18)

With estimates of frequencies, complex amplitudes, and
damping factors, the original signal can be reconstructed from
its contaminated samples. To demonstrate the effectiveness of
the ESPRIT algorithm, an example will be given to infer the
individual component of signal mixture

y(t) = I2mX60L | 3072w x5106=300¢ 4 5 ,j2mx9126—250t | o(t),
(19)

where the unit of y(t) can be either volts or amperes. The
sampling interval is At = 1/5000, and the signal-to-noise ratio
(SNR) corresponding the fundamental component e/27<60¢ jg
30 dB. The original and reconstructed signals together with
their components are depicted in Fig. 1, where one cycle of
the fundamental frequency is utilized, while the reconstruction
error is illustrated in Fig. 2. From those figures, we see that
original and estimated signals are very similar. The ESPRIT
algorithm does work well.

D. Performance Analysis

The probabilities of false alarm and detection are two
fundamental factors to measure the performance of a detector.
Unfortunately, both the null and the alternative hypotheses
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contain unknown parameters that cannot be analytically reach-
able. Therefore, an exact formula of the probability of false
alarm or of detection is unavailable. As an alternative, the
receiver operation characteristic (ROC) [13] becomes a tool
to numerically insight the detection performance.

IV. NUMERICAL RESULTS
A. Single Damped Sinusoid

This subsection examines the detection performance of the
GLRT in discriminating a single sinusoid and a single damped
sinusoid. The binary hypothesis are specified as

HO . y(t) — ej2ﬂ-><50t —|—v(t)

. 20
Hl y(t) — a1€j27'r><50t—'ylt +U(t) ( )

To guarantee a fair comparison, the energy of e/27*%0t and
ape727>x50t=mt jg equally preset:

T T
/ ldt:/ laq [2e™ 21t @1
0 0
which yields
2’}/1T
W=V @2

after ignoring the initial phase, where [0, 7] denotes the time
span of sampled signals. In computation, the sampling interval
At is set as 1/500 second, and T is chosen as 0.02 second
(one cycle). The detection performance is shown with the
help of ROC curves: Fig. 3a illustrates various ROC curves
with different damping factors, while Fig. 3b depicts various
ROC curves with different SNR values. It is not surprise
to see that the detection performance is improved with the
increase of i, as the Kullback-Leiber divergence between
their probability density functions (pdfs) will be enlarged if
71 increases. Similarly, enhancing the SNR will improve the
detection performance.

It is worth to mention that the damping factor for a real
power system is in general much larger than 15, and the SNR
can be over 20 dB [2]. Therefore, this approach would become
even better in handling real situations.

B. Multiple Damped Sinusoids

This subsection demonstrates the performance of the GLRT
in detecting multiple damped sinusoids. The binary hypothesis
are specified as

HO . y(t) —_ 6j27r><50t + 'U(t)
rHl . y(t) —_ ej27r><50t + 0‘2ej27r><213t—300t

+ 0‘1€j27r><479t—210t =+ ’U(t)

(23)

The sampling interval At is set as 1/500 second, and sampling
span is chosen as 0.01 second (half cycle). The ROC curves
with different SNR values are shown in Fig. 4, where the
detection performance is obviously improved with the increase
of SNR. Clearly, the ratio between the power of the two
damped sinusoids and that of the fundamental frequency is
small for the alternative hypothesis; this demonstrates that the
GLRT works well for weak transient detection.
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Fig. 3.  ROC curves with different (a) damping factors and (b) different
average SNR values. The SNR for (a) is set as 20 dB, while the damping
factor for (b) is chosen as 2. Each curve is statistically obtained via 10000
Monte Carlo simulations.
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Fig. 4. The ROC curves in detecting multiples damped sinusoids, where half
cycle of the fundamental frequency is employed.

V. CONCLUSIONS

The power grid is not a stationary network, and fre-
quently internal and external circuit changes will result in
voltage/current transients. Those transients will degrade the
power quality and can cause potential damage to dedicate
electrical devices. A reliable system should properly monitor
and detect them. In this paper, the transient detection problem
is investigated with binary hypothesis test, where the null
hypothesis is modeled as a sinusoid, while the alternative
one is treated as a sum of damped sinusoids. As the model
parameters are assumed unknown, a GLRT realization is used.
Some implement issues including computational complexity
have been covered in this paper, and numerical results reveal
its good performance.
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