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ABSTRACT

In this study we propose a system for overlapped-speech detec-
tion. Spectral harmonicity and envelope features are extracted to rep-
resent overlapped and single-speaker speech using Gaussian mixture
models (GMM). The system is shown to effectively discriminate the
single and overlapped speech classes. We further increase the dis-
crimination by proposing a phoneme selection scheme to generate
more reliable artificial overlapped data for model training. Evalu-
ations on artificially generated co-channel data show that the nov-
elty in feature selection and phoneme omission results in a relative
improvement of 10% in the detection accuracy compared to base-
line. As an example application, we evaluate the effectiveness of
overlapped-speech detection for vehicular environments and its po-
tential in assessing driver alertness. Results indicate a good corre-
lation between driver performance and the amount and location of
overlapped-speech segments.

Index Terms— Active safety, co-channel speech, overlapped
speech detection

1. INTRODUCTION

Co-channel speech is referred to a monophonic audio recording in
which at least two speakers are present. The presence of co-channel
speech in audio recordings poses a great challenge for many speech
applications such as automatic speech recognition (ASR) and speaker
identification (SID). There have been two major approaches in the
literature towards alleviating the co-channel speech problem. One
approach is to separate the target or interfering speech signals by en-
hancing one or suppressing the other [1, 2, 3]. The second approach
is to detect the presence of more than one speaker at every time in-
stance, which is mainly referred to as overlapped-speech detection
[4, 5, 6]. In many applications, including the problem investigated
in this study, the latter suffices in mitigating the degradations caused
by co-channel speech (for a review see [7]). An example is reduc-
ing errors in speaker diarization by omitting overlapping speech re-
gions [8]. In [9], Yantorno investigated the impact of overlapping
speech segments in SID. Another advantage of detecting overlapping
speech segments in co-channel scenarios is that it enables one to ex-
tract the contextual information of a conversation by determining the
locations and amount of overlapped-speech in that conversation [10].
The main focus of the present study is to determine the location of
overlapped-speech and showcase the correlation of these locations
with speakers’ attention.
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As an example application, we evaluate the effectiveness of
overlapped-speech detection for in-vehicular environments and its
potential in assessing driver alertness. Human error contributes to
over 95% of the accidents on the road, causing not only an economic
impact but also human loss and suffering [11]. There are several fac-
tors contributing to human error in driving scenarios, one of which
is driver distraction. Many regulations in the form of new laws and
guidelines are enforced on drivers as well as auto-manufacturers to
minimize distractions within the vehicular environment, particularly
targeting visual distractions [12]. As the use of audio/speech based
systems is dramatically increasing for in-vehicular technologies, it
is important to understand how they impact driver performance.
Previously in [13] the impact of in-vehicle audio/speech activity
on driving performance was investigated. This study further ana-
lyzes the driver involvement in in-vehicular speech activity and its
influence on driving performance. The objective of our study is to
employ overlapped-speech detection as a means to identify highly
competitive conversations in which the driver is involved. By sensing
any variations in driving performance, the co-channel analysis along
with driving performance evaluation could help recognize speech-
related distractions, which are hypothetically highly correlated with
overlapping speech [10]. Driver performance is evaluated using sen-
sor information extracted from a smart portable device (e.g., Tablet),
and developing statistical models for the purpose of maneuver recog-
nition and analysis. The evaluation is accomplished by computing
deviations of current maneuvers from the general trend (see [14] for
more details).

The paper is organized as follows: we first describe our method
of detecting overlapped speech segments in a given co-channel
speech signal; Section 2 provides information on audio features
used in our framework. The back-end or the likelihood ratio based
detection system is explained in Section 3, followed by experimen-
tal setup using the TIMIT corpora in Section 4. In Section 5, we
continue by applying the proposed system to a real-world in-vehicle
scenario thereby demonstrating the correlation between overlapped-
speech and instances of driver distraction. At the end, conclusions
are drawn in Section 6.

2. FEATURES

There have been a number of studies discussing the pros and cons
of different features in the context of overlapped speech detection.
In [4], Boakye evaluated the commonly used features in overlapped
speech detection, and identified the best performing features for the
task of speaker diarization. In this study, a subset of features used
in [4] and [5] are adopted for our system development. An impor-
tant characteristic of overlapped-speech compared to single-speaker
speech is the presence of two relatively different fundamental fre-
quencies [15]. The interference of the overlapping speaker results
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Fig. 1. Comparison of overlapped-speech average aperiodicity(top)
and single-speeker speech average aperiodicity (bottom). The single-
speaker features have a wider distribution at lower aperiodicities
which belongs to voiced speech. The presence of the interfering
speech in voiced regions increases the aperiodicity.

in less harmonic structure in the spectrum of overlapped-speech seg-
ments. There have been attempts to track the fundamental frequency
of multi-speaker speech signals [16], but the accuracy of these meth-
ods drops significantly in noisy conditions, even when dealing with
a single speaker. Other methods of capturing the amount of har-
monicity of speech segments exploited in overlapped-speech detec-
tion are the Spectral Autocorrelation Peak-Valley Ratio [17] and the
fundamentalness of speech segments[5]. In this study, we incorpo-
rate multiple features to effectively capture complementary harmonic
and envelope information from speech spectra. The features chosen
are 1) the aperiodicity measure introduced in [18], 2) the kurtosis of
speech, 3) the spectral flatness measure (SFM), and 4) mel-frequency
cepstral coefficients (MFCC) and its first order time derivative. The
logic based on which these features are selected is discussed in more
detail in the remaining of this section.

2.1. Average Spectral Aperiodicity
Aperiodicity is a measure for the amount of non-harmonic structure
in the speech spectrum of a given frame. It is the normalized energy
of non-harmonic frequency bins to the total energy of the spectrum
[18]. The decrease in the harmonic structure due to the presence
of a competing talker is the motivation to use such a measure in
detecting overlapped-speech. Fig. 1 compares the distributions of
the average aperiodicity measure for each frame of overlapped and
single-speaker speech. The difference in the distributions is in the
low-aperiodicity portion. A lower aperiodicity typically indicates
“voiced” phonemes such as vowels that have a harmonic spectrum.
This figure shows that the aperiodicity measure can be adopted as an
effective feature for overlapped-speech detection. The detection is
more accurate for vowels which is desirable for many speech appli-
cations (e.g., SID).

2.2. Kurtosis
Kurtosis has been reported as an effective measure for detecting the
presence of multiple-speakers in co-channel signals in numerous
studies [5, 4, 19]. It is well-known that overlapped-speech signals

exhibit lower kurtosis compared to single-speaker speech signals
[20].

2.3. Spectral Flatness Measure
The SFM is a feature that represents the amount of harmonicity of the
short term speech spectrum in a single value. It is the ratio of the geo-
metric to arithmetic mean of the spectral magnitudes in all frequency
bins. The closer these two means are, the less harmonic the spec-
trum. The presence of two interfering fundamental frequencies in
overlapped-speech would result in a lower SFM, i.e., the harmonic-
ity is reduced.

2.4. Mel-Frequency Cepstral Coefficients
MFCCs are chosen to capture differences in the spectral envelope
of single-speaker to overlapped-speech. Our experiments show that
using the first order cepstral derivative (∆MFCC) provides valu-
able information for overlapped-speech detection. This is not sur-
prising since one would expect the variation of spectral envelopes
to be different in the presence of competing speakers. Here, 12-
dimensional MFCC features (excluding C0) are extracted and ap-
pended with ∆MFCC to form 24-dimensional vectors.

3. SYSTEM DESCRIPTION

The detection system, in which the above noted features are incorpo-
rated, is based on Gaussian mixture modeling (GMM) of single ver-
sus overlapped speech. To the best of our knowledge, GMM based
feature space modeling for overlapped-speech detection has not been
effectively utilized. Here, we propose a technique to create proper
training input to represent overlapped-speech. Our pilot experiments
show that all combinations of different phonemes are not equally in-
formative in training the double-speaker model (see Section 4). More
importantly, using a certain set of phonemes in generating artificial
overlapped speech signals may also have a negative impact on the
system performance. In order to examine this hypothesis, a table
of all English phonemes is constructed and in different attempts dif-
ferent subsets of phonemes are selected to create overlapped-speech
segments. Fig. 2 shows how the phoneme-pairs are chosen in our
framework. In this figure, as an example, the nasal phonemes /m/
and /n/ are removed (shaded in the table). This implies that these
phonemes are not used in generating the overlapped-speech data.
Each small segment of the overlapped-speech data is created by the
summation of the phonemes corresponding to each element in a ta-
ble similar to Fig. 2. The phonemes are normalized and temporally
aligned by truncating the longer phoneme. Each of the phonemes
from the pair belongs to one of two speakers. This procedure is
repeated for different pairs of speakers (from a set of M speakers)
in order to capture the speaker variability. Some phonemes, such
as stop consonants, are not used in creating the overlapped-speech
data, because summing these (i.e., stop consonants) with high energy
and harmonically structured phonemes (such as vowels) will result in
signals that more or less belong to the single-speaker class. A ma-
jor challenge in overlapped-speech detection is that single-speaker
speech can be easily mistaken as overlapped-speech, and the pro-
posed phoneme-omission scheme is expected to solve this problem
to a great extent, thereby resulting in better performance.

The detection system uses two GMMs, one for single-speaker
speech and one for overlapped-speech. The models are trained using
various speech files from different speakers. Individual phonemes
are summed with 0dB average Signal to Interference Ratio (SIR).
The types of phonemes which are used to create overlapped-speech
segments are experimentally selected, although some of the omitted
phoneme-pairs can be inferred from basic understanding of phoneme

2835



S
p

ea
k

er
-2

 p
h

o
n

em
es

 

Speaker-1 phonemes 

 /ɪ/ /e/ /æ/ /ɒ/ /ʌ/ /ʊ/ … /n/ … /dʒ/ 
/ɪ/        -   

/e/        -   

/æ/        -   

/ɒ/        -   

/ʌ/        -   

/ʊ/        -   

…        -   

/m/ - - - - - - - - - - 

…        -   

/dʒ/        -   

 

 

Double-speaker GMM 

 
Overlap 

decision 
Single-speaker GMM 

Fig. 2. Overlapped speech detection system description. Shaded
areas in the table indicate which phonemes are omitted in generating
phoneme-pairs.

characteristics. Table 1 shows the improvements obtained by omit-
ting different phoneme sets from the overlapped-speech training set.

4. EXPERIMENTS

The single-speaker and double-speaker models are trained using
phonemes from TIMIT data. The individual phonemes are extracted
using TIMIT data transcriptions. All 10 TIMIT utterances are used
for 10 speakers to generate the single-speaker model. The double-
speaker model is trained using the procedure explained in Section 3.
A total of 10 different speakers are selected to build the double-
speaker training data, of which half are used as speaker 1 and the
other half as speaker 2 (refer to Fig. 2 for the definition of speaker
1 and 2). The features are extracted from 25 ms frames with a
frame-shift of 10 ms. Two sets of test data are used: (i) Artificially
generated co-channel speech signals by adding TIMIT utterances.
This type of co-channel data might be unrealistic to represent conver-
sational co-channel speech; however such co-channel speech signals
do exist and are the result of cross-talk between two independent
channels. (ii) A set of realistic conversational co-channel speech
signals collected from the UTDrive vehicle (see Section 5). In all
cases experiments are carried out only for male speakers due to the
fact that the UTDrive data consists solely of male speakers.

The measures used to evaluate the overlap detection performance
in the TIMIT test set are as follows:

Recall Rate (Rr): Number of Correctly Detected Overlaps to
Total Number of Overlaps Present

Precision Rate (Rp): Number of Correctly Detected Overlaps to
Total Number of Overlaps Detected

False-Alarm Rate (Rf ): Number of Incorrectly Detected Over-

Table 1. Results obtained by omitting misleading phonemes in gen-
erating the artificial overlapped-speech data.

Removed Phonemes F(%) Rf (%) Rr(%) Rp(%)
No phonemes removed
(baseline)

63.24 37.12 63.60 62.88

Nasals 63.30 36.20 62.80 63.80
Nasals and stops 63.42 36.33 63.19 63.67
Nasals, stops, and glides
w/o aperiodicity

65.49 34.42 65.41 65.58

Nasals, stops, and glides w/
aperiodicity

69.49 34.31 73.77 65.69

laps to Total Number of Overlaps Detected

F-measure (F): F =
2RrRp

Rr + Rp

F-measure takes on values between 0 and 100, with higher values
indicating better performance. The performance of the detection sys-
tem is shown in table 1. It is seen that the phoneme selection scheme
results in higher F-measure. In addition, utilizing the aperiodicity
measure provides further gain in performance.

5. REAL-WORLD IN-VEHICLE APPLICATION

In addition to artificial co-channel signals, we investigate the pro-
posed system’s performance in a real-world scenario where over-
lapped speech is part of the conversations between the parties. Based
on social sciences studies [10], overlapped-speech is known to be a
sign of the amount of competitiveness of the speakers and we believe
that there exists a high correlation between the amount of competi-
tiveness in a conversation and the amount of “focus” the driver can
spend on his/her driving task. Detecting “unsafe” conversations by
measuring the amount of overlapped-speech as a signature for highly
competitive behavior in conversations could be a preliminary step
towards developing speech based warning systems to alert the driver
about the driving safety, without requiring sophisticated speech sys-
tems such as ASR to analyze the content of the conversations. An
initial analysis is performed measuring the variations in driving per-
formance while the driver is engaged in a conversation. For the anal-
ysis, the noisy in-vehicle speech data is enhanced using the opti-
mally modified log-spectral amplitude (OM-LSA) estimation algo-
rithm [21], and speech regions are automatically segmented using
speech activity detection (SAD) [22].

A previous study in [14] demonstrated that in-vehicle speech ac-
tivity affects driving performance. This study incorporates maneuver
recognition and analysis algorithms presented in [23, 14]. However,
no further analysis was made in [14] on the contextual information of
the speech taken place. Using the described method for overlapped-
speech detection, not only the speech segments, but also the com-
petitive involvement can now be extracted and analyzed. The con-
versational speech data collection with UTDrive, [13], is designed
with the focus to examine speech and particularly overlapped-speech
as parameters that are known to partially determine driver behavior.
The tasks in which the drivers have been asked to participate are de-
signed to activate their competitiveness and involvement in order to
increase the amount of overlapped-speech segments in the conversa-
tions [10]. The driving route is divided into four segments that are
repeated in two phases. In the first phase the driver drives through
the route without performing any secondary task to become familiar
with the route and the vehicle. The second phase demands some ex-
tra activities each belonging to one segment of the route. The tasks
are described below:

Segment 1: In this segment of the road the passengers will initi-
ate a conversation by asking the driver questions about casual topics
such as the weather (other topics may be chosen).

Segment 2: In this segment the driver will participate in a game
called “I spy” that requires him/her to spot and name an object such
as a billboard, traffic sign, etc. and call out its name before the other
passengers. Whoever gets the maximum “I spy” correctly is the win-
ner. A wrong “I spy” will result in a negative point.

Segment 3: A set of TIMIT sentences are played through a
portable tablet and the driver is required to repeat each sentence
before the next sentence is played.

Segment 4: A conversation is initiated by one of the passengers
and the driver is asked to give his/her opinion on the subject and
debate on their agreement or disagreement with the passenger.
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Fig. 3. A snapshot of inside the UTDrive data collection vehicle. The
portable device is mounted on the wind-shield.

5.1. Driving maneuver recognition and analysis
In order to measure the driver’s performance, maneuver recognition
using CAN-bus signals has been previously utilized [13]. However,
as shown in [23, 14], sensor information extracted from low cost
portable devices can provide more accurate maneuver recognition.
In this study, to better understand the influence of in-vehicle speech
on driving performance, we collect in-vehicle speech along with all
the available sensor information on the smart portable device (i.e.,
Tablet) in the UTDrive setup. Fig. 3 shows the inside of the UT-
Drive vehicle and the mounted Tablet. For more information about
the maneuver recognition system see [23, 14].

Fig. 4 shows the driving performance for a segment of the route.
The regions where the driving performance is normal are marked as
green, while the yellow and red regions indicate moderate and risky
driving, respectively. The time instances at which the driver is en-
gaged in a conversation are shown as blue circles where the filled cir-
cles mark overlapped-speech. It is seen from the figure that there are
at least 3-4 segments in the route where the driver performed a mod-
erate/risky maneuver. Although these instances are short (20–40 s),
they are likely to result in a crash of varying intensity. The same
segment of the route was driven by the same driver in the first phase
with no abnormalities in his normal driving pattern. The only change
in the second phase is the engagement of the driver in a conversation.
The driver’s speech involvement and co-channel information shown
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Fig. 4. The impact of overlapped speech on driver performance for a
5 min segment of the route. Competitive speech increases the driver’s
cognitive load which adversely impacts his driving performance. The
driver is aware of this and predicts his inability to maintain normal
driving and stops speaking in patches 1-3.
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Fig. 5. Sample waveform to demonstrate overlapped-speech detec-
tion in UTDrive data. The ground-truth of overlapped speech re-
gions(red dashed line) is manually transcribed. Green solid lines
mark the regions obtained from the detection system.

in Fig. 4 follow the expected trend. In patch 2, the driver contin-
ues speaking even though he was recently involved in a competitive
speech, hence compromising severely his driving performance.

5.2. Overlapped-speech detection for UTDrive data
The UTDrive conversational data consists of low SNR speech data in
car noise. This noise decreases the performance of the overlapped-
speech detection system to a great extent. Moreover, the channel
difference between the train data (i.e., TIMIT) and the UTDrive data
also degrades performance. To solve this problem, a small sample of
single-speaker data is manually extracted from the UTDrive data to
adapt the two models (i.e., single and overlapped) using maximum
a posteriori (MAP) adaptation [24]. This MAP-adaptation technique
is not impractical since it is reasonable to assume that a small sam-
ple of speech data can be extracted from the speech file. The ex-
tracted single-speaker speech data is divided into two segments and
the speech data is summed to create a training set to be used in adapt-
ing the double-speaker model. Pilot experiments show that this tech-
nique improves the accuracy of the overlap detection system, making
it possible to have a rough estimation of the amount of overlapped-
speech data in a realistic co-channel speech recording (see Fig. 5).
This figure shows that the detection system can be reliably used for
in-vehicular environments.

6. CONCLUSION

The present study has proposed a system for the detection of
overlapped-speech for simulated and actual scenarios. It was shown
that the concatenation of spectral harmonicity and envelope infor-
mation can effectively discriminate the single and overlapped speech
models. The discrimination is further increased by selecting a subset
of individual phonemes to be used in generating artificial overlapped
data for model training. As an example application, we evaluated
the effectiveness of the proposed framework in real in-vehicle data
with the purpose of showing the correlation between the location
and amount of overlapping speech segments and driver performance.
We showed that the presented system alongside the features used in
the experiments result in a reasonably accurate overlapped-speech
detection.
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