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ABSTRACT

This paper describes a method to compute tapered areas of a
probability density function by means of integral transforms
of its noisy Laplace transform. This problem is directly rel-
evant to Nuclear Magnetic Resonance data for fluid and rock
characterization. We describe integral transforms that are di-
rectly applicable to the measured magnetisation data, to esti-
mate the tapered areas. In petrophysics, these tapered areas
are useful in estimation of fluid saturations and bound and
free fluid volumes. Since integral transforms are linear, un-
certainty in the tapered areas can be computed as a function
of signal-to-noise (SNR) in the data. Performance of these
transforms is demonstrated on simulated data and compared
to results from the traditional inverse Laplace transform.

Index Terms— Inverse Laplace transform, Nuclear Mag-
netic Resonance, analysis of exponentially decaying data,
petrophysics

1. INTRODUCTION

The acquired magnetization decay in Nuclear Magnetic Res-
onance (NMR) experiments is commonly modeled by a sum-
of-exponentials model that relates the measurements M(t)
with a Laplace transform of the underlying probability den-
sity function fT2(T2), also known as T2 distribution, such that

M(t) =

∞
∫

0

e
− t

T2 fT2(T2)dT2 + ǫ(t) (1)

where ǫ(t) denotes the additive white, Gaussian noise with
known statistics.

In many applications, the parameters of interest corre-
spond to specific areas of the density distribution. As shown
in Fig. 1, these areas are often found using either sharp or
tapered cut Heaviside functions in log(T2) domain [1].

In oilfield applications, fT2(T2) is often considered to di-
rectly reflect the rock-pore size distribution with short relax-
ation times T2 corresponding to small pores and larger relax-
ation times corresponding to larger pores. Thus, in these ap-
plications, sharp or tapered areas of fT2(T2) are often thought
to directly provide information of underlying pore geometry.
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Fig. 1. Tapered vs. sharp areas.

Although sharp transitions are routinely used to compute ar-
eas, tapered transitions have recently been considered to re-
flect better the underlying physics of NMR relaxation and
capillary pressure of fluids in rocks [2]. Sharp and tapered
areas have many applications including the following:

1. Computation of discrete pore sizes: In complex car-
bonate rock, the T2 distribution is often discretized into
three distinct bins, reflecting the three different pore-
sizes - micro, meso and macro-pores. Inferences from
this discretization have been used with other data sets
to help understand relationships between the geological
facies and petrophysical and reservoir-flow properties
of these complex carbonate rocks.

2. Separation of bound and free fluid: Since fT2(T2) is
thought to reflect the pore size distribution, bound and
free fluid volumes are often determined by applying a
sharp cut-off to the T2 distribution. Based on lab ex-
periments, areas above the cut-off is related to the free
fluid volume indicating large pores potentially capable
of producing and area below the cut-off is related to
bound fluid volume indicating small pores containing
fluid that is trapped by capillary pressure and incapable
of producing fluid[3].

3. Computation of hydrocarbon and water saturations:
When two distinct peaks are seen in T2 distributions,
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one of them is often associated with the water phase
while the other is associated with hydrocarbon. The po-
sition of the oil peak as well as the area underneath is
used to estimate hydrocarbon viscosity and saturation
respectively [3].

2. RELATION TO PRIOR WORK

Traditionally, the sharp or tapered areas are computed as fol-
lows. An inverse Laplace transform (ILT) algorithm is used
to estimate fT2(T2) from the measured M(t) (see [4] and ref-
erences therein). Petro-physical parameters such as fluid sat-
urations or bound and free fluid volumes are computed from
either sharp or tapered areas obtained from the T2 distribu-
tion. Since T2 spans decades from milli-seconds to seconds,
the tapered areas are computed in log(T2) domain. However,
it is well-known that the ILT is an ill-conditioned problem
requiring regularization and incorporation of prior informa-
tion about the solution into the problem formulation [5, 6].
Due to their non-uniqueness, the choice of the regularization
functional as well as the weight given to prior information are
well-known drawbacks of ILT algorithm

In this paper, we describe a method based on integral
transforms to directly provide tapered areas. This method ob-
viates the need to compute fT2(T2) using the ill-conditioned
ILT. An important aspect of this work is that it helps quan-
tify parameters that can be reliably obtained from the data
and their dependence on the signal to noise ratio (SNR) in
the data. This integral transform method to estimate areas
can be generalized to multiple dimensions such as other NMR
modalities like diffusion-relaxation and T1 − T2 data [7].

Section 3 of this paper describes a few simple integral
transforms such as the sinc, exponential Haar and exponen-
tial sine transforms to compute tapered areas as well as some
ideas to deal with sharper transitions. Section 4 compares
simulation results from the integral transform method with
results from the traditional ILT. Finally, section 5 concludes
this paper.

3. TAPERED TRANSITIONS IN log(T2) DOMAIN

An integral transform of the measured data is defined as

K [M(u)] ≡
∞
∫

0

k(t, u)M(t)dt (2)

The integral transform is specified by its kernel function
k(t, u). Examples of often-used integral operators include
Laplace, Fourier and Hankel transforms. In our application,
when the data is described by eqn. (1), we have previously
shown that when the kernel is the Mellin operator where the
kernel of the integral equation is given by k(t, u) = tu−1

Γ(u) ,
eqn. (2) directly provides moments of T2 relaxation time [8].

Here, we describe several kernels K [M(u)] such that
eqn. (2) directly provides tapered areas in the specified T2

region. As shown in Fig. 1, let Tc denote the T2 relaxation
time at which the desired cut-off is 0.5. The tapered area is,

A =

∞
∫

0

k(t, Tc)M(t)dt (3)

=

∞
∫

0

K(T2, Tc)fT2(T2)dT2. (4)

where K(T2, Tc) ≡
∞
∫

0

k(t, Tc)e
−t/T2dt can be thought of as

the ”Laplace”-like transform of k(t, Tc) and where we used
the definition of M(t) in eqn. (1).

The parameter Tc is user-specified and may come from
laboratory study of rock and fluid properties or may corre-
spond to a value of T2 expected to separate two fluids in the
T2 domain [3].

The integral transform to compute tapered and sharp
transitions ideally should satisfy the following properties:
1) the kernel k(t, Tc) should exist ∀t and K(T2, Tc) should
exist ∀T2, 2) based on the underlying petrophysics, it is de-
sirable that K(T2, Tc) be monotonic between 0 and 1 with
limT2→0 K(T2, Tc) = 0, limT2→∞ K(T2, Tc) = 1 and

K(T2, Tc)

∣

∣

∣

∣

T2=Tc

= 0.5, and 3) it should be possible to adjust

the slope m in the log(T2) space of the transition region with

m ≡ dK(T2, Tc)

d log T2

∣

∣

∣

∣

T2=Tc

. (5)

When the kernel k(t, Tc) satisfies the above properties,
the uncertainty in area A due to the additive noise in the data
is

σ2
A = σ2

ǫ tEE (6)

where σǫ denotes the standard deviation of the additive noise
in eqn. (1) and tE is the sampling rate. The parameter E can
be thought of as the ”energy” of the function k(t, Tc),

E =

∫ ∞

0

k2(t, Tc)dt. (7)

In general, we find that when k(t, Tc) is square integrable
with finite E, it gives rise to tapered areas in log(T2) domain.
Sharper transitions in the log(T2) domain require larger E,
resulting in larger uncertainty in the estimated area.

Next we describe a few simple integral transforms that
provide tapered transitions, their properties and some prac-
tical experimental considerations that may help choose one
transform over another. These transforms are also summa-
rized in Table 1.

Sinc transform: The Laplace transform of a sinc function
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with k(t, Tc) = 2
πt sin

(

t
Tc

)

has a Heaviside-like behavior

given by

K(T2, Tc) =
2

π
tan−1

(

T2

Tc

)

(8)

where the complex frequency s of the Laplace transform has
been evaluated at 1/T2. Its slope in the log(T2) domain is the
constant m = 0.32, according to eqn. (5).

Fig. 2 shows the sinc function and its corresponding
Laplace transforms. The slope in the T2 domain cannot be
increased. However, it can be decreased by considering ex-
ponentially decaying functions multiplying the sinc function.
From eqn. (7), the energy of the sinc function is E = 2

πTc .
Thus, using eqn. (6), the uncertainty in the estimated area
decreases with increasing Tc. This decrease in uncertainty
in estimated area with increasing Tc underlines an important
concept: the information regarding short relaxation times is
only in the early echo data. Consequently, the amplitudes
corresponding to early relaxation times have a larger uncer-
tainty than those corresponding to the later relaxation times.
This observation is consistent with the uncertainty estimates
observed in [9].

Exponential Haar transform (EHT): Consider an exponen-
tially decaying square wave of the form,

k(t, Tc) = A(−1)ne−βt, 2nα < t < 2(n+ 1)α. (9)

This function is a square wave whose amplitude is decaying
exponentially. From analogy with the square-waves of the
Haar wavelet transform, we refer to eqn. (9) as the exponen-
tial Haar transform.

Given an energy E, variables A, α and β can be deter-
mined to satisfy some of the properties enumerated earlier.
For example, to have the same energy as the sinc function, we
get α = (1.572)Tc, A = 0.7213

Tc
and β = 0.4087

Tc
. In this case,

the slope in the log(T2) domain is found to be m = 0.35,

Exponential Sine Transform (EST): Consider the exponen-
tially decaying sine function k(t, Tc) = α2+β2

α2 e−βt sin (αt)

where α =
√

4Eβ − β2 and β = 1

T 2
c (4E− 2

Tc
)

. Its corre-

sponding Laplace transform is K(T2, Tc) = α2+β2

α2+
(

β+ 1
T2

)2 .

The slope is m=0.3 and the energy is E = 2
πTc

.
Fig. 2 shows the sinc transform, EHT and EST at Tc =

0.1. There is a practical consideration to prefer the EHT or
EST to the sinc transform. The support in the time-domain of
the EHT or EST kernels are smaller than that of the sinc func-
tion. Since field-log data are sometimes abruptly truncated in
time (resulting in loss of information at large time), the sinc
function which has a large support in the time domain is more
likely to be biased when applied to measured field data. Table
1 summarizes the results.
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Fig. 2. Kernel of integral transforms for the calculation of ta-
pered areas. Also shown are the corresponding tapered tran-
sitions.

3.1. Sharp Transitions

There are several ways to obtain sharper transitions. We
can numerically construct k(t, Tc) by essentially following
a filter-design approach where using the truncated singular
value decomposition of the forward mapping we can find
approximate solutions. Another approach is based on the
truncated Mellin transform applied to the derivative of the
magnetization decay. It is possible to show that the linear

transform 1
Γ(ν)

T
∫

0

tν−1 dνM
dtν dt provides areas with a degree of

sharpness given by ν. Finally a third approach is based on
successive approximations where the kernel k(t, Tc) of the
integral transform is obtained from the inverse Laplace trans-

form of Kn(T2, Tc) = g0

(

Tc

T2

)

+
∑n

k=1 akgn

(

Tc

T2

)

where

gn is a well chosen function that approximates the Heaviside
function.

These methods will be described in a later communica-
tion.

4. SIMULATION RESULTS

In this sub-section we evaluate and compare the computation
of area using EHT in the time-domain with the T2 domain
procedure of first computing fT2(T2) (ILT).

Noiseless data are simulated from the four T2 distribu-
tions shown in Fig. 3 and corrupted with additive zero-mean,
white, Gaussian noise with standard deviation σǫ = 0.2, sim-
ulating noisy data often present in field-logs. 100 noise re-
alizations were simulated for each model. For all cases the
sampling rate was tE = 200µs. The number of samples was
chosen so that the magnetizationM(t) decays to a small num-
ber.
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Transform Parameters k(t, Tc) K(T2, Tc) E m

Sinc α = 1
Tc

2
π

sin(αt)
t

2
π
tan−1 (αT2)

2
πTc

0.32

Exponential A = 0.7213
Tc

A(−1)ne−βt A
(

1
T2

+β

) tanh
[

α
(

1
T2

+ β
)]

2
πTc

0.35

Haar α = (1.572)Tc

β = 0.4087
Tc

2nα < t < 2(n + 1)α

Exponential α =
√

4Eβ − β2 α2+β2

α
e−βtsin(αt) α2+β2

α2+

(

β+ 1
T2

)2
2

πTc
0.3

Sine β = 1

T2
c

(

4E−

2
Tc

)

Table 1. Simple integral transforms that give rise to tapered transitions in the log(T2) domain.

10
0

0

0.05

0.1

0.15

0.2
Model #1

f
T
2
(T

2
)

10
0

0

0.1

0.2

0.3

0.4
Model #2

10
0

0

1

2

3
x 10

−3 Model #3

T2

f
T
2
(T

2
)

10
0

0

0.01

0.02

0.03

0.04
Model #4

T2
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The workflow used to compare the time-domain and T2

domain methods is as follows. The noisy magnetization data
M(t) given in eqn. (1) and a specified Tc are inputs to both
methods. The Tc values were chosen to be 33 ms. In the
time-domain, the area from the EHT is computed in a straight-
forward manner using eqn. (9). In the T2 domain, the T2 dis-
tribution was obtained according to the Butler-Reeds-Dawson
[10] which automatically selects the level of regularization
according to the SNR. Next, the area A was computed us-
ing eqn. (4) with K(T2, Tc) corresponding to the exponential
Haar transform.

The two methods are compared with respect to the nor-
malized root mean square error computed in reference to the

true value of A according to nrmse =

√
〈(Â−A)2〉

A × 100.
The results of the analysis on 100 noisy data sets from

each model are summarized in the histograms in Fig. 4. The
bias in A is the difference between the mean (black line) and
true value (red line) indicated in the figure. It is clearly seen,
as expected, that the bias is larger when the computation is
performed in the T2 domain. The standard deviation of A
from each method is also indicated in the figure by the spread
of the points. Using eqn. (6), the expected standard deviation
of A for each model is 0.0124 which matches the estimated
standard deviation quite well as shown in Table 2.
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Fig. 4. Histograms of estimated tapered areas using inverse
Laplace transform and integral transform.

Model True Area IT Area ILT
µ± σ nrmse (%) µ ± σ nrmse (%)

1 0.683 0.684 ± 0.0116 1.69 0.677± 0.0126 2.05

2 0.761 0.756 ± 0.0126 1.74 0.753± 0.0124 1.93

3 0.471 0.471 ± 0.0112 2.38 0.465± 0.0116 2.79

4 0.722 0.717 ± 0.0127 1.87 0.705± 0.0141 3.03

Table 2. Mean, standard deviation, and normalized root
means square error (nrmse) in the estimation of the tapered
areas using the exponential Haar transform.

5. CONCLUSIONS

In this work we proposed alternative techniques for estimat-
ing tapered areas of the T2 distribution directly from the mea-
sured magnetization decay in NMR experiments. This avoids
the need to first solve the ill-conditioned problem of finding
the T2 distribution and has the additional advantage of given
uncertainty estimates. We illustrated the performance on sim-
ulated experiments and showed that the parameters estimated
by this new technique are better in terms of bias and standard
deviation than the ones obtained by means of the traditional
approach.
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