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Abstract 

An important, yet under-explored, problem in speech processing 
is the automatic assessment of intelligibility for pathological 
speech. In practice, intelligibility assessment is often done 
through subjective tests administered by speech pathologists; 
however research has shown that these tests are inconsistent, 
costly, and exhibit poor reliability. Although some automatic 
methods for intelligibility assessment for telecommunications 
exist, research specific to pathological speech has been limited. 
Here, we propose an algorithm that captures important multi-
scale perceptual cues shown to correlate well with intelligibility. 
Nonlinear classifiers are trained at each time scale and a final 
intelligibility decision is made using ensemble learning methods 
from machine learning. Preliminary results indicate a marked 
improvement in intelligibility assessment over published 
baseline results. 
Index Terms: intelligibility assessment, speech pathology, 
machine learning, multi-scale analysis 

1. INTRODUCTION 

Speech production is an intricate process of motor coordination, 
requiring muscle groups from many subsystems, including 
respiration, phonation, resonance, and articulation. In healthy 
individuals, the planning and implementation of these motor 
movements is fluently and accurately executed in time and 
space, resulting in a clear speech output. It follows that 
disruption to any of the aforementioned subsystems required for 
speech will manifest as degradations at different time scales in 
the speech output. Assessing the severity of intelligibility 
reduction due to speech output degradation has been a long-
standing problem in the field. Most often this is done by 
subjective assessment by an expert in the area.    

Subjective tests are inherently inconsistent, costly and, 
oftentimes, not repeatable. In fact, research has shown poor 
inter- and intra-rater reliability in clinical assessment [1, 2]. 
Furthermore, clinicians working with clients form a bias based 
on their interactions, resulting in unreliable intelligibility 
assessment [2]. As such, a set of valid, reliable, objective, and 
sensitive metrics of speech intelligibility are desired. 

Unfortunately, procedures that would enhance validity and 
reliability of subjective evaluation (e.g., sizeable listener panel, 
inclusion of anchor conditions, etc. [3, 4, 5]) are costly and time 
consuming. Over the past several decades, research has begun to 
capitalize upon computer-based evaluations, with the goal to 
offer a repeatable, reliable assessment with minimal cost. Two 
major approaches are utilized: 1) reference-based intelligibility 
estimations, which measure deviation from a “clean” reference 
signal, and 2) blind assessments, which measure a variety of 
speech features, irrelevant of the intended target.  

A number of reference-based approaches rely on estimating 
subjective intelligibility through the use of pre-trained automatic 
speech recognition (ASR) algorithms [6]. More specifically, 
these algorithms are trained on healthy speech and the error rate 
on pathological speech serves as a proxy for estimating the 
intelligibility decrement [6]. 

In addition to ASR-based approaches, other reference-based 
approaches quantify perceptual differences between the distorted 
signal and an “oracle” clean signal [7, 8, 9, 10, 11]. The metrics 
rely on simplified psychoacoustic models that mimic human 
perception to measure perceptual errors. Although these 
algorithms have been shown to correlate well with subjective 
assessment, their utility in assessing pathological speech is 
limited because of the requirement for a reference signal. In 
contrast to these reference-based approaches, we propose an 
algorithm that operates only on the degraded speech and 
generates an estimate of intelligibility. 

Research in blind algorithms for intelligibility assessment 
has been more limited. In telecommunications, the ITU-P.563 
standard has been shown to correlate well with speech quality, 
however this is not optimized for pathological speech [12]. In 
[13], [14] and [15], the authors attempt to estimate dysarthric 
speech intelligibility using a set of selected acoustic features. 
Although the algorithms have shown some success in a narrow 
context, the feature sets used in these papers do not make use of 
long-term rhythm disturbances in the signal, common in the 
dysarthrias. In contrast to this, the algorithm we propose here 
makes use of acoustic cues at different time scales that capture 
short-term voicing problems and long-term rhythm problems. 

Motivated by previous research on perceptual correlates to 
intelligibility and quality [16,12], we propose a system that 
extracts features at different time scales (resolution of phonetic, 
segmental, and suprasegmental information) and attempts to 
assess specific challenges to intelligibility. As mentioned above, 
the algorithm does not use a reference signal and it relies on 
features extracted at multiple scales. Generally speaking, these 
features measure distorted rate and timing of speech (sentence 
level features), unnatural loudness variation (sentence level 
features), unnatural pitch/formant variation (vowel/consonant 
level features), articulatory imprecision (vowel/consonant level 
features), and omissions or distortions of specific consonants and 
vowels (phoneme level features). See Table 1 for examples of 
proposed metrics for each level of analysis. For each scale, we 
train a classifier, and, as a result, obtain multiple intelligibility 
decisions per sentence. A final decision is made using ensemble 
learning methods from machine learning. The classifiers are 
trained on a training set and tested on a development set. All 
results are presented for the “NKI CCRT Speech Corpus” 
(NCSC) recorded at the Department of Head and Neck Oncology 
and Surgery of the Netherlands Cancer Institute .  
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The rest of this paper is outlined as follows: In section 2, we 
detail the technical approach, including a description of the 
features at different scales and the classification algorithms used. 
In section 3, we provide comparative results using the pathology 
challenge data. In section 4, we close with some concluding 
remarks and outline future work. 

2. TECHNICAL APPROACH 

A high-level diagram of the proposed approach is shown in Fig. 
1. As the diagram shows, for each speech sentence, 𝑥  (𝑡), we 
extract a set of features at three different scales: at the sentence 
level, at the vowel/consonant level, and at the phoneme level. 
Pre-trained SVMs are used to make an intelligibility decision at 
each level, then a linear stacking scheme fuses the individual 
classifier decisions to form a final hypothesis. In this section, we 
describe in detail the main contributions of this paper: the novel 
feature set and the classification scheme used to make final 
intelligibility decisions. 

2.1. Features 

2.1.1 Sentence Level Features 
Baseline – The 6125-dimensional baseline feature set in [17] was 
used as a starting point. In an effort to manage the data size and 
to minimize the effects of the curse of dimensionality, we use 
PCA to reduce the dimension of this feature space by retaining 
the PCA features that account for 90% of data energy (389 
features). We denote the resulting feature set by 𝐟!"   . 

EMS – The envelope modulation spectrum (EMS) is a 
representation of the slow amplitude modulations in a signal and 
the distribution of energy in the amplitude fluctuations across 
designated frequencies, collapsed over time. It has been shown to 
be a useful indicator of atypical rhythm patterns in pathological 
speech [16]. The speech segment, 𝑥(𝑡), is first filtered into 7 
octave bands with center frequencies of 125, 250, 500, 1000, 
2000, 4000, and 8000 Hz. Let ℎ!(𝑡) denote the filter associated 
with the ith octave. The filtered signal 𝑥!(𝑡) is then denoted by, 

𝑥!(𝑡) = ℎ! 𝑡 ∗   𝑥  (𝑡) (1) 

The envelope in the ith octave, denoted by 𝑒!(𝑡), is extracted by: 

𝑒! 𝑡 = ℎ!"# 𝑡 ∗   𝐻(𝑥   𝑡 ) (2) 

where, H(.) is the Hilbert transform and ℎ!"# 𝑡  is the impulse 
response of a 20 Hz low-pass filter. Once the amplitude envelope 
of the signal is obtained, the low-frequency variation in the 
amplitude levels of the signal can be examined. Fourier analysis 
is used to quantify the temporal regularities of the signal. Six 
EMS metrics were then computed from the resulting envelope 
spectrum for each of the 7 octave bands, 𝑥!(𝑡), and the full 
signal, 𝑥  (𝑡): 1) Peak frequency, 2) Peak amplitude, 3) Energy in 
the spectrum from 3-6 Hz, 4) Energy in spectrum from 0-4 Hz, 
5) Energy in spectrum from 4-10 Hz, and 6) Energy ratio 
between 0-4 Hz band and 4-10 Hz band.  This results in a 48-
dimensional feature vector denoted by 𝐟!"#. 
LTAS – The long-term average spectrum (LTAS) captures 
atypical average spectral information in the signal. Nasality, 
breathiness, and atypical loudness variation, common causes of 
intelligibility deficits in pathological speech, present themselves 
as atypical distributions of energy across the spectrum; LTAS 
attempts to measure these cues in each octave. For each of the 7 
octave bands, 𝑥!(𝑡), and the full signal, 𝑥  (𝑡) we extract 1) 
Average normalized RMS energy, and 2) RMS energy standard 
deviation, 3) RMS energy range, and 4) pairwise variability of 
RMS energy between ensuing 20 ms frames. This results in a 28-
dimensional feature vector, denoted by 𝐟!"#$. 
Combining all three sentence-level feature sets into one vector, 
we obtain the following 465-dimensional feature vector: 

𝐟!" = 𝐟!"
! 𝐟!"#! 𝐟!"#$! !

 

This becomes the input of our sentence level SVM classifier. 

2.1.2 Vowel/Consonant Level Features 
A voice-activity detector (VAD), followed by a voicing detector 
is used to locate all active voiced speech frames. The VAD 
operates on 4ms frames and is based on an iterative adaptive 
thresholding approach, similar to that in [12]. The voicing 
detector, followed by an autocorrelation-based pitch estimator on 
64ms frames is used to determine pitch marks, for the pitch-
synchronous features described below. For the specifics of the 

Level Feature set 
Sentence   
Rate, rhythm, and prosody EMS 
Nasality, breathiness, loudness 
variation 

LTAS 

Vowel/ Consonant  
Unnatural pitch/formant contours Basic speech 

descriptors 
Vowel space reduction Formant structure 

statistics 
Articulatory Imprecision Vocal tract statistics 
Vocal quality (nasality and breathiness) Spectral energy 

distribution  
Phoneme  
Distortions/substitutions Silence statistics, 

spectral statistics 
Rate and rhythm Duration 

Figure 1: A high-level diagram of the proposed classification 
framework. Features are extracted at three different scales, and a 
final intelligibility decision is made by combining individual 
decisions from each scale. 

Table 2: Perceptual cues previously shown to correlate to 
decreased speech intelligibility and their respective feature set 
proxies.  
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pitch marking algorithm, we refer the reader to [12]. This pre-
processing is required for extracting the salient features for 
intelligibility assessment. For all active frames, we calculate 
some basic descriptors of the speech signal and some more 
advanced speech statistics. For all voiced frames, we track the 
vocal tract statistics. We describe the features in detail below. 
Basic Speech Descriptors – For all active speech frames, we 
calculate a series of features that describe the basic properties of 
the speech signal. More specifically, we calculate 1) the average 
pitch, 2) an estimate of pitch variance, 3) the average signal 
level, and 4) the signal level variance for active frames, and 5) 
the signal level variance for voiced frames. The resulting 5-
dimensional vector is denoted as  𝐟!"#$%   . 
Speech Formant Statistics – It has been shown that the kurtosis 
and skewness of the speech formant structure serve as good cues 
for unnatural speech [12, 17]. For each active speech frame, we 
calculate the 21st-order LPC and cepstral coefficients. Then for 
each set of coefficients, we calculate the per-frame kurtosis (κ) 
and skewness (ζ) of the LPC and cepstral coefficients, using (3) 
and (4) below: 

κ =
1
P

  
!

!!!

a! −
!
!

a!!
!!!

σ!"#$$

!

 (3) 

ζ   =
1
P

  
!

!!!

a! −
!
!

a!!
!!!

σ!"#$$

!

 (4) 

where P is the order of the formant analysis and σ!"#$$ is the 
standard deviation of the coefficients. The average and standard 
deviation of these values over the entire active speech signal 
serve as the salient speech statistics for unnatural speech 
detection. The resulting 4-dimensional vector is denoted by 𝐟!"#"   . 
Vocal Tract Statistics – In an attempt to directly estimate 
physical properties of the speaker vocal tract, we model the vocal 
tract as a set of tubes of time-varying cross sectional area [12]. 
The area is estimated using the reflection coefficients from pitch-
synchronous windows. Pitch-synchronous analysis allows for 
windows that are synchronized with the human speech 
production system. We calculate the 8th order reflection 
coefficients from the LPC coefficients for each window and then 
calculate the tube areas using the following equation 

S! =
1 + µμ!
1 − µμ!

S!!!, i = 8, 7,… ,1 (5) 

The tube areas are then combined into a set of features 
representing the rear (S!, S!, S!), middle (S!, S!, S!), and front 
(S!, S!) articulators for every voiced frame. For each speech 
segment, we calculate the following features 1) The maximum 
value of S! over the voiced sections of the speech signal, 2) The 
average value of S! over the voiced sections of the speech signal, 
3) The averaged cross-sectional area of the rear articulators over 
the speech signal, 4) An estimate of the correlation between the 
cross-sectional area of the rear and middle articulators 5) The 
average of the derivative of the position of the maximum cross-
sectional area of all eight tubes (this measures the consistency 
with which the tube changes over time), 6) The ratio of voiced 
frames in the speech signal over all active speech frames. The 
resulting 6-dimensional vector is denoted by 𝐟!"   . 
Combining all three feature sets into one vector, we obtain the 
following 15-dimensional feature vector: 

𝐟!"# = 𝐟!"#$%
! 𝐟!"#"! 𝐟!"!

!
 

This becomes the input of our vowel/consonant level SVM 
classifier. 

2.1.3 Phonemic Level Features 
The phonemic information file for the data in [17] is used to 
segment the sentences into their composite phonemic parts. For 
each phoneme in a sentence, we extract the features described 
below. The features become inputs to different classifiers, each 
trained on specific phonemes, and an intelligibility decision is 
formed for each phoneme present in a given sentence. The 
features are described below. 
Phoneme Duration – The duration of each phoneme is readily 
available from the phonemic information file. The duration is 
indicative of rhythmic problems in pathological speech. The 
duration is denoted by f!"   . 
Phoneme Bandwidth – The average bandwidth for each phoneme 
in the sentence is estimated by computing the frequency range 
corresponding to 80% of all signal energy. We denote this 
feature by f!"#   .   
Silence Statistics – We calculate the length of the silences and 
their normalized position in the speech signal. More specifically, 
for each sentence, we calculate the average duration of each 
silence and the average normalized position. The duration is 
readily available from the phonemic information file. The 
normalized position is calculated by dividing the midpoint of 
each silence segment by the total duration of the speech signal. 
The resulting 2-dimensional vector 𝐟!"#    is used to  
Combining all feature sets into one vector, we obtain the 
following 4-dimensional feature vector: 

𝐟!" = f!"   f!"#   𝐟!"#
! !

 

This becomes the input of our phoneme level SVM classifier. 

2.2. Training 

Prior to training, all classifier inputs are standardized to mean 0 
and standard deviation 1. The standardization parameters are 
learned from the training set and applied to the cross-
validation/test set during learning. For all trained SVMs, optimal 
parameter selection was done through cross-validation. More 
specifically, we select initial values of the complexity parameter 
and the RBF kernel parameter from the following ranges 
respectively: C   ∈   2 !!:!:!"

  
    
 and γ   ∈   2 !!":!:!

  
    
; this is then 

followed by a more refined search centered around the optimal 
value. The LIBSVM toolbox for Matlab was used for SVM 
classification [18]. 

2.3. Ensemble Learning 

Motivated by its success in the recent Netflix competition [19], 
we make use of linear classifier stacking as a way of combining 
the scores from multiple classifiers. The base-level classifiers are 
individually trained on the training data, each resulting in a 
different probability of success (PS) on the development set. We 
use the normalized PS as weights for our linear combination 
scheme, followed by a thresholding operation. Note that not all 
classifiers are present for each sentence since each sentence 
contains different phonemes.  
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2.4. Results 

All results are presented for the “NKI CCRT Speech Corpus” 
(NCSC) recorded at the Department of Head and Neck Oncology 
and Surgery of the Netherlands Cancer Institute [17]. The corpus 
contains recordings and intelligibility evaluations of 55 speakers, 
resulting in 1647 labeled sentences and 739 unlabeled sentences 
in the test set. The labeled data is further divided into a training 
set and a development set. Although a partition was provided for 
analysis in [17], we noticed significant differences in data 
statistics between these two sets. This could be due to different 
recording conditions, different speakers, different phrases, etc. 
As a result, we select a random subset of examples to serve as a 
new training set and a new development set. The statistics of the 
resulting partitions were much more consistent when compared 
to the originals. 
In Table 2, we show the unweighted and weighted average 
(UA/WA) recall of the intermediate SVMs (at the sentence and 
at the vowel/consonant level) and of the final ensemble method. 
These results are compared against the baseline classification 
results published in [17]. As the table shows, the proposed 
approach results in a marked improvement in recall rate for the 
development set.  
 

Classifier Development 
UA (WA) 

  

Baseline – SVM 61.4 (61.3) 
Baseline – RF 65.1 (65.1) 

  

SVM – Sentence 79.6 (79.8) 
SVM – VC 76.6 (77.3) 
Ensemble 84.4 (84.8) 

 

3. CONCLUSIONS 

The ultimate goal of this work is to develop robust methods for 
predicting listener performance with a given pathological speech 
signal. Toward that end, future analyses will explore the utility 
of the proposed approach to predict different dimensions of 
intelligibility decrements. Different measurements of 
“intelligibility,” such as identifying words, word onsets, and 
phonemes, that track directly to the acoustic measurements at the 
sentence, vowel/consonant, and phoneme level may show a more 
robust relationship to how this manifests in a listener’s percept.  
Further, examining this relationship will allow for the 
determination of when “degraded” speech becomes problematic 
for listeners, offering a quantifiable assessment of the severity of 
the communication impairment. By examining aspects of 
production, more fine- grained measures of perceptual features 
(i.e., subjective descriptions vs. binary measures of 
“unintelligible” or “intelligible”), in tandem with relative 
acoustic measurements, we may be able to better understand the 
process from production to perception. 
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