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ABSTRACT

Prediction of driving behaviors is important problem in de-

veloping the next-generation driving support system. In order

to take account of diverse driving situations, it is necessary

to deal with multiple time series data considering commonal-

ities and differences among them. In this paper we utilize the

beta process autoregressive hidden Markov model (BP-AR-

HMM) that can model multiple time series considering com-

mon and different features among them using the beta process

as a prior distribution. We apply the BP-AR-HMM to actual

driving behavior data to estimate VAR process parameters

that represent the driving behaviors, and with the estimated

parameters we predict the driving behaviors of unknown test

data. The results suggest that it is possible to identify the dy-

namical behaviors of driving operations using BP-AR-HMM,

and to predict driving behaviors in actual environment.

Index Terms— driving behavior prediction, Bayesian

nonparametric approach, beta process autoregressive hidden

Markov model, beta process

1. INTRODUCTION

Even nowadays approximately 690,000 per year of traffic ac-

cidents still occur, although the number of accidents develops

a trend to decrease in Japan [1], so it is imperative to strive to

prevent accidents furthermore. Practically, some researchers

have developed enthusiastically the indices of the risk of col-

lision and the automatic emergency brake system for automo-

tive vehicle, to suppress the number of traffic accidents [2,3].

And recently researchers turn to think about the estimation

of driving scenes and the prediction of behaviors of drivers

to realize novel driving support systems, in order to support

drivers in diverse environment [4–9], not just to prevent colli-

sions. If we can estimate driving scenes or driver’s behaviors,

it is possible to utilize the driving support system like the col-

lision preventing system according to present driving scene,

which is effective to prevent accidents beforehand.

When we intend to model driver’s behaviors in order to

estimate driving scenes or predict driving behaviors, hidden

Markov model (HMM) [3, 5] that treats time series data, or

its extension such as autoregressive hidden Markov model

(AR-HMM) [6–8] are often utilized. Ikeda et al. modeled

time series data of brake pressure, and proposed the training

data selection method of the adaptive brake alerting system

using likelihood for the model [5]. Other researchers used the

AR-HMM whose output vector under a state is subject to its

own vector-autoregressive (VAR) process [6–8]. Although it

is possible to model time series dataset that have the same set

of states, transition probabilities and output processes jointly

using HMM or AR-HMM, a dataset that doesn’t satisfy the

assumption must be modeled separately. In practice it is pos-

sible to occur that it exhibits a specific behavior in a certain

time interval, so it is not easy to judge whether we can model

a set of time series data jointly or not. And if we model time

series dataset including a time series that exhibits its own be-

haviors, we may fail to discover such behaviors. In order to

model driving behaviors under diverse driving scenes, it is

necessary to utilize the novel method that can solve the prob-

lem to deal with common or different features across multiple

time series data.

Fox et al. proposed novel efficient modeling method,

beta process autoregressive hidden Markov model (BP-AR-

HMM) that utilizes beta process prior and enables to model

multiple time series data considering common or different

features across a set of data [10]. They identified not only

the common behaviors across multiple time series, but also

the specific behavior exhibited in a specific time series using

multiple time series of motion capture data.

In this paper, we will apply BP-AR-HMM to the actual

driving time series dataset and verify whether it can discover

the dynamical behaviors of driving operations, and predict the

driving behaviors in actual environment.

2. DRIVING BEHAVIOR MODELING

To model whole driving operation time series dataset, we uti-

lized BP-AR-HMM that is an extension of HMM and AR-

HMM. This section describes an outline of BP-AR-HMM

with reference to HMM and its extension.
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2.1. HMM and its model extension

To model time series data, hidden Markov model (HMM) and

autoregressive hidden Markov model (AR-HMM) are widely

utilized. In HMM each time point of time series has its la-

tent state, and the latent state generates observable variables

to model time series. And each latent state is subject to the

Markov process, so its transition to a succeeding state is con-

trolled by the transition matrix that describes the probabilities

of transition from a state to all probable states. In AR-HMM

that is an extension of HMM, observable variables are sub-

ject to the identical VAR process as it belongs to the identi-

cal state. According to this property we can expect that AR-

HMM will give more promising result than HMM, when we

apply it to data that exhibit its dynamical behavior contigu-

ously. If we adopt either HMM or AR-HMM, however, it is

necessary to determine the number of states using the cross-

validation or according to the information criterion.

Fox et al. proposed an extensional model that can deter-

mine the number of states according to training data, sticky

hierarchical Dirichlet process hidden Markov model (sHDP-

HMM) [11]. The sHDP-HMM is a kind of methods referred

to as Bayesian nonparametric approaches that are devel-

oped actively by researchers recently. The methodology of

Bayesian nonparametrics is one of the method of Bayesian

statistics, attempting to learn the model complexity automat-

ically according to training data [12, 13]. Taniguchi et al.

utilized sHDP-HMM to model driving behaviors, and suc-

ceeded to segment driving time series [9]. In contrast, we

utilized BP-AR-HMM that is an extension of AR-HMM as

a Bayesian nonparametric approach. BP-AR-HMM can take

into account either common or different features across mul-

tiple time series data, modeling them jointly with the prior

probability distributions generated by beta process [10].

2.2. BP-AR-HMM

Fox et al. proposed BP-AR-HMM as a Bayesian nonparamet-

ric approach that can model multiple related time series data

taking into account commonalities and differences among

them. Each state has its dynamical behavior, and each dy-

namical behavior is represented by a specific VAR process.

As is for sHDP-HMM, it allow the number of states to be

countably infinite in theory, and the number is determined

according to the intrinsic complexity of a training dataset.

Transition from a state to its succeeding state is subject to the

Markov process as well as AR-HMM, but transition probabil-

ities are determined for each time series respectively. Fig. 1

shows the graphical model of BP-AR-HMM.

Authors assume that there exits N time series data and

they share common dynamical behaviors θ1, θ2, . . . . Binary

indicator variable fi = [fi1, fi2, . . .] represents which dynam-

ical behaviors time series i exhibits. When time series i ex-

hibits dynamical behavior k , it is represented as fik = 1, and

Fig. 1. Graphical model of BP-AR-HMM.

fik can be defined by Bernoulli process and represented as:

fik|ωk ∼ Bernoulli (ωk) (1)

where mass ωk is a mass of an atom in a draw B that is gen-

erated by beta process conjugate to Bernoulli process, which

is represented by base measure B0, ωk and θk:

B|B0 ∼ BP (1, B0) (2)

B =

∞
∑

k=1

ωkδθk (3)

where δ represents Kronecker’s delta. Beta process is conju-

gate to Bernoulli process, and marginalizing it along B results

to gain predictive distributions known as Indian buffet process

(IBP) [14]. In time series i , transition from a state to its suc-

ceeding state is subject to Dirichlet distribution:

π
(i)
j |fi, γ, κ ∼ Dir ([γ, . . . γ, γ + κ, γ, . . .]⊗ fi) (4)

where ⊗ denotes the element-wise vector product, and κ is

a hyperparameter that adds additional mass to self-transition

probability. Let y
(i)
t denote observable variable of time series

i at time t , and z
(i)
t latent state. If we assume each dynamical

behavior is r-order VAR process, the relation between a state

and a corresponding observation can be formulated as follow:

z
(i)
t ∼ π

(i)

z
(i)
t−1

(5)

y
(i)
t =

r
∑

m=1

A
m,z

(i)
t

y
(i)
t−m + e

(i)
t

(

z
(i)
t

)

(6)

e
(i)
t (k) ∼ N (0,Σk) , (7)

where dynamical behavior θk consists of θk = {Ak,Σk} ,

and autoregressive coefficient matrix Ak = [A1k,A2k, ...,Ark]
. They applied matrix-normal inverse-Wishart distribution

(MNIW) [15] to {Ak,Σk} as prior distribution. The MNIW

is consists of a matrix-normal distribution MN (Ak;M,Σk,K)
given Σk, and inverse-Wishart distribution IW (S0, n0),
where M,Σk,K

−1 denote mean matrix, covariance matrices
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(a) Course 1 (b) Course 2

Fig. 2. Course 1 and 2 with estimated state sequences using BP-AR-HMM. The subject was instructed to drive the car (a)

clockwise on course 1, and (b) counterclockwise on course 2. These figures show the estimated state sequences of first lap

among five laps respectively.

for column and row of Ak , and n0,S0 denote degree of

freedom and scale matrix in inverse-Wishart distribution.

In this study, we assumed that the order of VAR process

r is 1, and assigned parameters of matrix-normal inverse-

Wishart distribution M = 0,K = 0.1Id, n0 = d + 2, and

S0 product of 0.75 and covariance matrix of observed data.

We estimated the other parameters with Markov chain Monte

Carlo (MCMC) sampling method, utilizing sum-product al-

gorithm [16] and reversible jump MCMC [17]. In addition,

Fox et al. applied gamma-distributed priors to γ, κ and en-

abled to estimate these parameters through MCMC sampling

[10]. The code of BP-AR-HMM developed by Fox is avail-

able on [18].

2.3. Measurement of driving behavior data

In this study, we measured data in a real road environment.

A subject was a 35 year-old male who drove on a daily ba-

sis, and we instructed him to drive our experimental car along

the two courses (Fig. 2), and to make a stop after every lap

he went around the course. The total number of laps are five

for each course respectively. During the experiment there are

other cars than ours around and people occasionally walked

across the road. We attached sensors to the experimental car,

so we could measure gas pedal opening rate, brake pressure

and steering angle of the car. We measured these three driving

operations with sampling rate 10Hz, and concatenated them

into the observation column vector y
(i)
t . We have already

confirmed the correspondence between the estimated state se-

quences obtained from applying BP-AR-HMM to our time

series data and the locations of the car on the courses, which

is consistent across laps (Fig. 2) [19]. Fig. 2 (a) and (b) show

the state sequences drawn on the course 1 and 2 respectively.

3. RESULT

We first applied BP-AR-HMM to training time series data that

are consist of four laps for each course, sum up to eight time

series. And we obtained four estimated state sequences and

transition matrices of states for each course, as well as seven

VAR process parameters θk = {Ak,Σk} (k = 1, 2, . . . , 7).
Fig. 3 shows the relationship between the state sequence and

three driving operations during the first lap of course 2 (Fig. 2

(b)). Each color in Fig. 3 corresponds to that in Fig. 2. Now

we focus our attentions on the locations just facing left cor-

ners of the course 2, which reveal the reproducible representa-

tion of state sequence across laps. The driving state revealed

state 4 (cream-color) followed by state 7 (brown) at the loca-

tion just before turning left, lower left, lower right, and upper

left corner of the course 2. The reason why upper right corner

did not reveal such state sequence pattern, which is probably

because the subject stopped the car in front of the upper right

corner (Fig. 3, from 78 to 84 second) and did not stop in front

of the other corners. Actually driving operations of the former

and the latter differed from each other.

The VAR process coefficient matrices of state 4 and 7, A4

and A7, are:

A4 =





0.1545 −0.0082 0.0001
0.0061 0.9975 −0.0001
−0.6746 17.2974 0.9764



 (8)

A7 =





1.0031 0.0272 0.0004
−0.0694 0.5159 −0.0001
12.5130 0.7974 1.0626



 . (9)

Each element of the column vector y
(i)
t represents gas pedal

opening, brake pressure and steering angle in order. When

the car was in front and beyond the corner turning left ex-
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Fig. 3. Driving operations time series of first lap on the course 2. The four corners of turning left at the location of lower left,

lower right, upper right and upper left correspond to at the time of 38, 51, 77 and 88 second respectively.

Fig. 4. Prediction of driving operations. light-colored ar-

rows: actual observations of driving operations, deep-colored

arrows: predicted driving operations. Orange, blue and green

arrows are those on the course 2 at lower left, lower right and

upper left corners of turning left, respectively.

cept upper right, gas pedal opening always kept 0%. And just

when the state got to be fourth state, brake pressure took pos-

itive value and steering angle was 0 degree. As a result of

these facts, when y
(i)
t was subject to VAR process of state

4 brake pressure attenuated gradually and steering angle in-

creased progressively (around 50 second in Fig. 3).

Next we show the result of predictions of driving opera-

tions of test data, fifth lap of course 2 (Fig. 4). Light-colored

and deep-colored arrows show actual observations and pre-

dicted driving operations respectively. Each arrow represents

the change of driving operations during the interval of 0.1 sec-

ond. Predicted driving operations almost trace the trajectory

of actual observations, except the inherent fluctuation. We

could predict the sudden decrease of brake pressure before

turning left, although the predicted decrease occurred earlier

than the actual observation on a deep-colored blue arrow. Ra-

tios of the variance of prediction error to that throughout time

series are 0, 0.164 and 0.0438 for each operation. As a con-

sequence, we concluded that driving operations can be pre-

dicted by dynamical behaviors estimated with BP-AR-HMM.

4. DISCUSSION

In this paper, we applied BP-AR-HMM to multiple time se-

ries of driving operation data considering the common and

different features among multiple data, in order to model driv-

ing behaviors. We successively tested whether the driving op-

eration sequence of novel time series can be predicted with

estimated dynamical behaviors by BP-AR-HMM, and con-

firmed that predicted driving operations have the same trajec-

tories as actual data, while we did not use any information of

course configuration.

In this experiment we measured the driving operation data

of only one subject on two courses, and the number of time

series applied to BP-AR-HMM was eight. Since we place

this study preliminary, it is necessary to model the driving be-

haviors using long-time and much more driving data in order

to reflect much more diverse driving situations. Our future

work includes inspecting (i) change of the number of esti-

mated states, (ii) relationship between estimated dynamical

behaviors and actual driving operations, and (iii) difference

of driving operation characteristics across multiple subjects.

These inspections might give us profound knowledge in de-

veloping the novel adaptive driving support system.
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