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ABSTRACT 

This paper proposes an anomaly detection method for sound 

signals observed from motors in operation without using 

abnormal signals. It is based on feature emphasis and 

effectively detects anomalies that appear in a small subset of 

features. To emphasize the features, the method optimally 

estimates the contribution rates of various features to the 

dissimilarity score between an observed signal and the 

distribution of normal signals. We report here our evaluation 

of the method using sound data observed from PCs and fans 

in operation. The evaluation demonstrates that the proposed 

method emphasizes a small subset of narrow frequency 

ranges of sounds and that it achieves an error reduction rate 

of up to 76%. 
 

Index Terms— Anomaly Detection, Feature Emphasis, 

Fault Diagnosis, Fault Detection 

 

1. INTRODUCTION 

Sensor signals such as sounds and vibrations that are 

observed from machines in operation are often used to 

diagnose machine faults in factory acceptance tests or during 

machine maintenance. The most primitive and fundamental 

method involves having experts manually examine the 

signals. For example, they listen carefully to the sound and 

based on their experience, judge it to be a machine failure if 

it is peculiar. This method requires extensive experience and 

great care. 

To automate this method, anomaly detection systems have 

been developed from accumulated know-how [1]. They were 

first developed for plants such as oil and gas plants [2][3]. 

These systems effectively detect anomalies but require both 

normal and abnormal signals to examine the properties of 

abnormal signals before operation. However, abnormal 

signals are rare and hence difficult to collect. Therefore, it is 

useful to detect anomalies without using abnormal signals. 

Methods to detect anomalies without using abnormal 

signals have also been proposed for various machines such 

as spacecrafts [4][5], aircrafts [6], space shuttles [7][8], 

bearings and couplings of rotating machines [9], and turbine 

rotors [10]. These methods learn rules that capture the 

normal behavior or a stochastic model of the normal signals. 

The observed signal that deviates from the rules or the 

model is regarded as abnormal. They manually select 

features that show the anomaly. However, the features are 

difficult to select when the anomaly appears in various 

features depending on the observed signals. Furthermore, the 

detection accuracy decreases if an anomaly appears in a 

small subset of features.  

This paper proposes a method based on feature emphasis 

to detect abnormal sounds of motors with multi-sound 

sources. The anomaly appears in various features, which are 

the log amplitudes of sound frequencies, depending on the 

sound source that shows the anomaly. The features are 

optimally emphasized for each observed signal using the 

normal signals. 

 

2. ANOMALY DETECTION METHOD 

A typical method to detect anomalies only from normal 

signals is to create a model of normal signals and detect 

outliers from the model [11][12]. An input signal is regarded 

as abnormal when a dissimilarity score 
0S , derived from the 

distance between features of the input signal and the model 

distribution of normal signals, exceeds a predefined 

threshold. The simplest definition of score 
0S  is 
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where 
iD  is the distance of the ith feature (i=1, 2,.., N) and N 

is the number of features. The method treats all the features 

equally so that the accuracy decreases if an anomaly appears 

in a small subset of features. 

Figure 1.  Flow of our anomaly detection system. 
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In order to approach the problem, we propose a method 

to detect anomalies efficiently by emphasizing the small 

subset of features in which the abnormal signals appear. Fig. 

1 shows a flow chart of our anomaly detection system. First, 

various features are extracted from signals of normal rotors, 

and a normal model, which is the distribution of normal 

signals, is trained from the features. Second, evaluation data 

are examined and determined to be normal or abnormal. The 

same features are extracted from the data, and the distance 

from the normal model of each feature is calculated. Then a 

newly defined score S  is also calculated from distance 
iD  

and finally, the input signal is detected to be abnormal if 

S exceeds a predefined threshold . 

We define S  as a generalized measure of 0S  in order to 

emphasize the features in which the abnormal signals appear. 

The score of each feature 
is ,
 and the total score S are 
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The emphasizing function 
iF ,
satisfies 
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where index  is a constant that controls the contribution 

rate of each feature to score S . The function 
iF ,
 

emphasizes the sensitivity of the total score S  to feature i 

of which 
iD  is high. Note that S  with =0 is used in the 

conventional method, whereas S  with >0 is used in the 

proposed method. In fact, S  equals 0S  in (1) when =0. 

Index  is optimally determined to be *
 
so that the score 

dispersion of the normal signals represents a minimum value. 

We determine  in that way to enlarge the difference 

between the score distribution of normal signals and that of 

the abnormal ones without using abnormal signals. Index *  
is given by 
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where 
 is the standard deviation of the normal signals’ 

scores, 
S  is the average score, 

mS ,
 is the score of normal 

signal m, and M is the number of normal signals for training. 

Here we rewrite 0S and S using -norm, which is a 

generalized length in a vector space, and discuss their 

meanings. Mathematically, the -norm of an N-dimensional 

vector is  
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Using (7), we rewrite 0S  and S  as 
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Let us consider a case of two-dimensional features for 

simplicity. Fig. 2 displays two-dimensional contour plots of 

S when  is 0, 0.5, 1, and 2. The light-colored regions have 

larger S  values than the dark regions. The contour of 0S  

has a diamond shape, whereas those of 5.0S , 1S  and 2S have 

flower-like shapes. This means that S when  is 0.5, 1, or 2 

exaggerates peculiar features more than 0S  does. Thus, 

S with >0 has the desired properties to detect an anomaly 

that appears in a small subset of features. 

 

3. EXPERIMENT USING SOUND DATA OF 

 PERSONAL COMPUTERS 

 An anomaly detection experiment was conducted using 

sound data observed from personal computers (PCs) 

assuming a test of silence before shipment. Each PC has 

three sound sources: the hard disc drive (HDD), fan, and 

optical disk drive (ODD). If the sound sources that made a 

louder sound could be detected, we could block shipments 

of defective PCs that do not meet a certain noise standard. 

Our method is worth applying in this situation because in 

actual situations, the abnormal data are rarely produced and 

are hard to obtain. 

 

3.1. Experimental Conditions 

 Sound data were obtained with a piezoelectric control 

vibration sensor attached to operating PCs. The frequency 

range was 10 Hz10 kHz. All PCs were of the same model. 

Each data sample is called an “event” hereinafter. Each 

event was 20 seconds long. Log amplitudes of spectra were 

obtained as features. The number of features N was 3197. Of 

the 20 total events, 13 normal events were used as training 

data, while 3 normal events and 4 abnormal events were 

used as evaluation data.  The normal events of the training 

data and that of the evaluation data were alternated with 

each other. The Mahalanobis distance was applied to 
iD  

defined as  
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where xi is a feature of the evaluation data, and i and Vi are 

respectively the average and the variance of the ith feature, 

which is extracted from normal signals. Threshold  was 

determined to be the score of the event that ranks the top 

20% of all normal events.  

Figure 2.  Contours of S. 
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3.2. Experimental Results 

   The accuracy of our anomaly detection system was 

evaluated with an F-value, which is the harmonic average of 

recall and precision. Recall refers to the ratio of events 

detected to be abnormal among all abnormal events. 

Precision refers to the ratio of abnormal events among the 

events detected to be abnormal. Table 1 shows the recall, 

precision, and F-value when =0 and =
*
=1.4. The F-

value increased from 0.626 to 0.900 with the proposed 

method. Thus, the error reduction rate is 73.3%.  

Figs. 3a and 3b show histograms of score S  when =0 

and =1.4, respectively. The shaded blue bars are the 

normal events, and the unshaded red bars are the abnormal 

events. The vertical dashed lines indicate threshold . The 

events on the right side of each line are identified as 

abnormal, and those on the left side are identified as normal.  

There are many abnormal events that are mistakenly 

identified as normal in Fig. 3a, whereas such events hardly 

exist in Fig. 3b. This indicates that the proposed method 

significantly improved the detection accuracy. 

Note that 20% of normal events must be identified as 

abnormal in both figures because threshold  is defined as 

the score of the event that ranks the top 20% of all normal 

events. Naturally, as  is set to be larger, the number of 

normal events identified as abnormal decreases, but the 

recall also decreases. Therefore, the choice of  depends on 

the user’s priority of these two properties.  

Here we explain the relationship between  and F-value. 

Fig. 4a plots  S and Fig. 4b plots the F-value as a 

function of . The value of  (=1.4 in the present case) that 

gives the minimum value of  S , which is 
* 

given by 

(5), indeed gives the maximum F-value.  

The spectrum and the scores of an abnormal event are 

illustrated in Fig. 5. In Fig. 5a, the red curve is a spectrum of 

the event, and the blue lines indicate the average spectrum 

and the error bars (average  standard deviation) of the 

normal events. The amplitude of the event exceeds those of 

normal ones at 120 Hz and 620 Hz, which are the respective 

sound frequencies of the HDD and the fan, and this implies 

that the HDD and the fan generate abnormally loud sounds. 

Figs. 5b and 5c show the scores 
is ,
, where =0 and =1.4, 

respectively. The scores at 120 Hz and 620 Hz are more 

emphasized than those of other frequencies in Fig. 5c 

compared to those in Fig. 5b. Thus, those frequencies were 

emphasized properly by using the proposed method. In other 

abnormal events, the frequencies that show the anomaly 

were also emphasized properly even when the number of 

Figure 4.  Standard deviation and F-value versus . 

Figure 5.  Abnormal event example. 

Figure 3.  Score histograms. 
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sound sources generating abnormally loud sounds was 

different from that of the event in Fig. 5.  

                                                                                                                                                                                                                               

4. EXPERIMENT USING SOUND DATA OF FANS 

Another experiment was conducted with communication 

devices, each of which had a single sound source consisting 

of a cooling fan. Sound data of cooling fans in operation 

were used for the experiment assuming a fault prediction test. 

A fan making an abnormal sound is liable to break down 

when electrical corrosion occurs for various reasons. Some 

accidents can be prevented if the anomaly sound is detected 

before breakdown.  

 

4.1. Experimental Conditions 

Sound data of fans in operation were obtained using 

various microphones. All fans were of the same model. The 

data samples were 4-15 seconds long and were obtained in 

different places; therefore, the sound level varied. To 

minimize the difference in sound levels, the power level was 

normalized so that the average amplitude equaled unity. The 

frequency range was 10 Hz3500 Hz and there were 81 

features N. Of the 37 total events, 23 normal events were 

used as training data while 3 normal events and 11 abnormal 

events were used as evaluation data. The normal events of 

the training data and that of the evaluation data were 

alternated with each other. The Mahalanobis distance 

defined in (10) was applied to 
iD . Threshold  was 

determined to be the score of the event that ranks the top 

10% of all normal events.  

 

4.2. Experimental Results 

The accuracy of the anomaly detection was evaluated with 

the F-value indicated in Table 2. The F-value increased from 

0.946 to 0.987, depending on the increase in recall, which 

was equal to 1.0. Thus, the error reduction rate is 75.9%. 

 One of the abnormal event examples is displayed in Fig. 

6. The spectrum of the abnormal event is plotted as a red 

curve in Fig. 6a. The average spectrum of normal events and 

error bars (average  standard deviation) are also indicated 

in the figure with blue lines. The red curve largely exceeds 

the blue line at 3300 Hz, which is the characteristic 

frequency of a fan with electrical corrosion. Figs. 6b and 6c 

show score 
is ,
, where =0 and =0.2, respectively. The 

score at 3300 Hz is the largest in the two figures. This 

property is more emphasized in Fig. 6c. Thus, an anomaly of 

an internal fan can be detected with high accuracy by using 

the proposed method. 

   

5. SUMMARY 

We presented an anomaly detection method for sound 

signals of rotors based on feature emphasis without using 

abnormal signals. To emphasize the features that show the 

anomaly, this method optimally determines the contributing 

rate of each feature to the dissimilarity score between an 

observed signal and the distribution of normal signals. 

Experiments were conducted using sound data observed 

from PCs and fans through vibration sensors and 

microphones, respectively. The error reduction rates were 

73% for PC data and 76% for fan data. Our future tasks 

include conducting further experiments using a large number 

of various machine data. 

 

Acknowledgements 

We thank Takeshi Zenko and Yasutaka Nishii for 

providing the sound data of fans. We are also grateful to 

Shinichi Ando for his helpful suggestions.   

Figure 6.  Abnormal event example. 

 =0 

(conventional) 

=
*
=0.2 

(proposed) 

recall 0.917 1.000 

precision 0.976 0.974 

F-value 0.946 0.987 

 

 =0 

(conventional) 

=
*
=1.4 

(proposed) 

recall 0.554 0.996 

precision 0.719 0.821 

F-value 0.626 0.900 

 

Table 2. Detection accuracy of experiment using fan 

sound data. 

 

Table 1.  Detection accuracy of experiment using PC 

sound data. 
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