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ABSTRACT

We propose a new method to separate mass spectra into compo-

nents of each chemical compound for explosives detection. The

conventional method based on probabilistic latent component anal-

ysis (PLCA) is effective because the method can solve the prob-

lems of non-negativity and non-orthogonality by using sparsity of

the domain of explosives detection. However, the convergence of

the method is slow, and the calculation time is long. In order to

solve this problem, the proposed method makes use of independent

component analysis (ICA) in the initialization process. Experimen-

tal results indicate that the convergence of the proposed method is

accelerated, and total calculation time is decreased.

Index Terms— Mass spectrometry, Blind source separation,

Probabilistic latent component analysis (PLCA), Independent com-

ponent analysis (ICA), Sparsity

1. INTRODUCTION

The threat of improvised explosive devices has become a serious

problem for all countries because the procedures and recipes for

making them are freely available on the Internet. To prevent ter-

rorist attacks, we have developed a walkthrough portal explosives

detector that consists of a high-throughput vapor sampling portal,

a high-sensitivity atmospheric pressure chemical ionization source,

and a high-selectivity linear ion trap mass spectrometer [1]. The

mass spectrometer measures the intensity corresponded to the num-

ber of ions for each mass-to-charge ratio (m/z). The m/z series of

intensities are called the mass spectrum. The detector observes the

time series of the mass spectra continuously, and it detects charac-

teristic patterns of explosives traces from the mass spectra data.

In mass spectra of the explosives detection system, explosives

compounds, other chemical compounds, and the chemical back-

ground are mixed with each other. Thus, it is necessary to separate

the mass spectra into the different compounds. The system does

not know what kind of chemical compounds can be measured in

advance, and so the task of the system is a blind source separa-

tion (BSS) problem. There are many researches that employ BSS

for mass spectra separation, such as principal component analy-

sis (PCA) [2] and independent component analysis (ICA) [3, 4].

Because PCA and ICA impose the orthogonality and the indepen-

dence respectively without constraints of non-negativity, and so

these methods are not fit to mass spectrometry domain. Thus these

methods suffer from performance degradation. Recently, there have

been several researches that apply non-negative matrix factorization

(NMF) [5, 6] and probabilistic latent component analysis (PLCA)

[7] to the area of mass spectrometry. These approaches have the

desirable feature that the estimated components are guaranteed to be

non-negative, and the approaches have the advantage that distortion

is not caused by negative values. Furthermore, the conventional

method based on PLCA [7] can solve the uncertainty problem of

the number of compounds by using statistical knowledge as sparsity

priors. However, the convergence of the method is slow, and the total

calculation time is long. Thus, the method can not run in real time,

and it is difficult to apply the method to the explosives detection

system in practice.

In this paper, we propose a acceleration method for PLCA. We

focus on that ICA can stably obtain a solution near the correct so-

lution, and its speed is fast. Thus, the proposed method makes use

of ICA in the initialization process of PLCA. Experimental results

indicate that the convergence of the proposed method is accelerated,

and total calculation time is decreased.

2. PROBLEM STATEMENT

The input signal is the time series of mass spectra x(t,m), where t
is the index of a time, and m is the index of m/z. T is the number of

the time index, and M is the number of the index of m/z. x(t,m) is

modeled as follows,

x(t,m) =
∑

k

c(k|t)s(m|k), (1)

where k is the index of a compound basis, K is the number of the

kinds of the compounds in the air, c(k|t) is the intensity of the k-

th compound in the time index t, and s(m|k) is the time-invariant

spectral basis component of the k-th compound.

In this paper, we estimate the unknown variables c(k|t) and

s(m|k) from the known variables x(t,m). This problem equals

to the blind source separation problem. In addition, we consider

the following three conditions of the explosives detection system.

First, s(m|k) is non-negative for all compounds and m/z because

mass spectra represent the number of ions for each m/z; second, we

can not assume the orthogonality between different basis component

s(m|k) because different components are mixed into the same m/z

in real environments; third, the number of compounds in the air K is

unknown because suspected chemical compounds and the chemical

background change depending on the environment at the time and

place.

2795978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



3. PLCA-BASED MASS SPECTRA SEPARATION

In this section, we explain about the conventional mass spectra sep-

araion method based on PLCA [7]. The PLCA model considers that

x(t,m) is propotional to the probability distribution that generates

x(t,m) as follows:

x(t,m) ∝ P (t,m) = P (t)
∑

k

P (k|t)P (m|k) (2)

PLCA estimates the unknown parameters P (k|t) and P (m|k) from

the input signal x(t,m). P (k|t) corresponds to c(k|t) in (1), and

we call P (k|t) the probabilistic activation. P (m|k) corresponds to

s(m|k) in (1), and we call P (m|k) the probabilistic basis compo-

nent. Also, in order to solve the under-determined problem that the

number of compounds in the air K is unknown, the conventional

method makes use of sparsity in the activations, sparsity in the basis

components, and sparsity among the basis components. Thus, the

method maximizes the following objective function with entropic

priors:

J ({P (k|t)} , {P (m|k)})

=
∑

t

∑

m

x(t,m) log
∑

k

P (k|t)P (m|k)

−βa
∑

t

H({P (k|t)}k)− βb

∑

k

H({P (m|k)}m)

−βc
∑

k,k′|k 6=k′

H({P (m|k)}m ,
{

P (m|k′)
}

m
), (3)

where βa is the parameter of the sparsity of Pt(k), βb is the pa-

rameter of the sparsity of P (m|k), βc is the parameter of the spar-

sity between bases, H({Pi}i) is the α-th order Renyi’s entropy de-

fined as H({Pi}i) = 1
1−α

log
∑

i Pi
α, and H({Pi}i , {Qi}i) is

the cross entropy defined as H({Pi}i , {Qi}i)=−
∑

i Pi logQi −
∑

i Qi logPi.

By maximizing J (P (k|t), P (m|k)), we can obtain PLCA al-

gorithm (Algorithm 1) to estimate P (k|t) and P (m|k). After the

algorithm converges, finally, we can calculate the estimate ĉ(k|t) of

c(k|t) from (5), and also the estimate ŝ(m|k) of s(m|k) from (7).

The conventional method achieve the correct solution in many cases.

However, the speed of convergence is slow, and the total calculation

time is long.

4. PROPOSED METHOD

We assume that the reason why the speed of convergence is slow is

that the initial solution is not adequate. As our conventional work

[7], in mass spectra separation domain, the correct solution is likely

to a sparse solution in terms of both time direction and m/z direc-

tion. However, the solution initialized by random values tends to be

far from a sparse solution. Thus, we need to think of a method of

initialization by a solution near the correct solution.

We focus on ICA for initialization. Similarly to PLCA, ICA

is an blind source separation method, so that ICA is available for

initialization. ICA does not impose non-negativity to the solution.

However, ICA imposes independence that is assumed also in PLCA,

and so the solution of ICA is near that of PLCA. Also, fast algo-

rithms of ICA are commonly known, for example, Fast ICA [9] and

the Natural Gradient algorithm [10]. So that, by comparison with the

calculation time of PLCA, that of ICA is extremely short. Thus, by

initializing the unknown parameters by ICA and reducing the num-

ber of iterations of PLCA, we aim to shorten the total calculation

Algorithm 1 PLCA [7]

1. Initialization process

Set all the unknown parameters to random values.

2. Iteration process

Iterate the following E step and M step.

E step:

P (k|t,m) =
P (k|t)P (m|k)

∑

k′ P (k′|t)P (m|k′)
, (4)

M step:

ĉ(k|t) =
∑

m

x(t,m)P (k|t,m), (5)

P (k|t) =

{ 1
1+

∑
k′ 6=1

g(βa,{ĉ(k′|t)}k)
if k = 1,

g(βa,ĉ(k|t))

1+
∑

k′ 6=1
g(βa,{ĉ(k′|t)}k)

otherwise,
(6)

ŝ(m|k) =
∑

t

x(t,m)P (k|t,m)− βc
∑

k′ 6=k

P (m|k′), (7)

P (m|k) = g(βb, {ŝ(m|k)}m,τ ), (8)

where g(β, {γi}i) is the entropic prior of Grindlay and Ellis [8]:

g(β, {γi}i) =
γi

β
∑

i γi
β .
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Fig. 1. Explosives detector.

time. By converting PLCA, we can achieve ICA-PLCA algorithm

(Algorithm 2). Similarly to the conventional method [7], in order

to concentrate the stationary chemical background on the first basis,

i.e. k = 1, we set P (m|k = 1) to the uniform distribution in (13),

and set P (k = 1|t) to the higher value than P (k 6= 1|t) in (14).

The calculation complexity of PLCA is O(LTKM), where L
is the number of iterations. In contrast the calculation complexity

of the above initialization process is O(LTK2). So that the initial-

ization process is faster than PLCA in the case of K < M . The

proposed method make use of this feature, and it can reduce the total

calclation time by increasing the number of iterations of the initial-

ization process and decreasing that of PLCA.

5. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method. We used the

device of the walk-through portal explosives detector [1] to record

the input mass spectra. Some of the authors had developed a proto-

type device as supported by Ministry of Education, Culture, Sports,

Science and Technology, Japan for three years since 2007. Based on

this prototype device, the device of this experiment was developed.

Figure 1 shows a model of the device. We recorded the mass spectra

in a real station to measure the chemical background of real envi-
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Algorithm 2 ICA-PLCA

In PLCA, replace the initialization process with the following

equations:

1. By the whitening matrix W , prewhiten x(t) =
[x(t, 1), · · · , x(t,M)]T and reduce the number of dimensions:

z(t) = [z(t, 1), · · · , z(t,K)]T = Wx(t). (9)

2. Compute the separated signals:

y(t) = [y(t, 1), · · · , y(t,K)]T = V z(t). (10)

3. Compute the natural gradient;

V = V + η

[

I −
1

T
tanh(y(t))y(t)

]

V . (11)

4. Return to 2. until convergence.

5. Convert V into a basis matrix S on the m/z space:

S = V W . (12)

6. By normalizing S, initialize P (m|k):

P (m|k) =

{

1
M

if k = 1,
|Sm,k−1|∑
m |Sm,k−1|

otherwise.
(13)

7. By normalizing y(t), initialize P (k|t):

P (k|t) =

{ 1
1+

∑
′
k
y′

k(t)
if k = 1,

y′
k−1

(t)

1+
∑

′
k
y′

k(t)
otherwise.

(14)

where y′
k(t) =

|yk(t)|∑
k |yk(t)| .

8. Run the iteration process of PLCA.

ronments. We used 3500 mass spectra of about five minutes from

the whole recorded data; i.e., T = 3500, and the number of the m/z

index M was 512. Figure 2 (a) shows the input mass spectra, and

Fig. 2 (b) is the chromatogram (time profile) of around m/z 59. The

chemical background components have stationary peaks at m/z 59,

m/z 62 and m/z 75 (Fig. 2 (a)). In this experiment, an experimenter

passed through the device with Compound 1 (m/z 59), i.e. k=2, four

times in the former half of the time, and with Compound 2 (m/z 59,

m/z 62, m/z 76 and m/z 77), i.e. k=3, five times in the latter half

of the time. As Fig. 2 (b) shows, the fourth peak of Compound 1

(t = 1600) was small and it had the same level as those of when

Compound 2 was passed (e.g. t = 1950).

We applied PLCA and ICA-PLCA described in Section 4. In

PLCA, all the unknown parameters were initialized by random val-

ues. On each condition, the estimation process was run 20 times. We

set the number of bases K in the estimation process at eight. βa was

1.02, βb was 1.02, βc was 0.4. The estimation process was run in

C# on a PC with an Intel Core i7 3.3GHz CPU and 12GB of RAM.

The measurements were SNRk,i,j as follows:

SNRk,i,j = 10 log10
maxt∈Ak,i

|ĉ(k|t)j |
√

1
|Nk|

∑

t∈Nk
|ĉ(k|t)j |2

[dB] , (15)

where Ak,i was the area around the i-th time when the k-th com-

pound is passed through the device, Nk is the non-active time area;

i.e., Nk=2 was [2000, 3500], and Nk=3 was [0, 1500], and j is the

(a) Mass spectra x(t,m). X and Y axis show t and m/z .
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(b) Chromatogram (time profile) of around m/z 59. X and Y axis

show t and the intensity I(t) =
∑

m∈[m/z 58, m/z 60] x(t,m).

Fig. 2. Input signal.
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Fig. 3. SNR for each method. X and Y show the number of iterations

and SNR [dB]. Error bars represent 95% confidence intervals.

index of executions. Next, we defined SNR as an ensemble mean

over k i, and j. In the case of the arithmetic mean, a peak SNRk,i,j

of which will be extremely high tends to cause SNR to be higher

excessively. In order to make much account of worse SNRk,i,j , we

defined SNR as the harmonic mean of SNRk,i,j over k i, and j:

SNR =







∑

k=2,3

∑

i,j

1

SNRk,i,j







−1

(16)

As Fig. 3 shows, the larger the number of iterations was, mostly

the higher the performance was. SNR of ICA-PLCA converged to

about 22 dB at about 10 iterations. However, in the cases that the

range of the number of iterations was 1 to 10, SNR of PLCA was

about 0 dB. The convergence of PLCA was much slower than that

of ICA-PLCA, and SNR of ICA-PLCA converged at about 30 iter-

ations. These results indicates that the performance of ICA-PLCA

with 10 iterations is comparable to that of PLCA with 30 iterations.

In contrast, as Fig. 4 shows, the calculation time of PLCA with 30
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represent 95% confidence intervals.
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Fig. 5. Estimates of the probabilistic spectral basis components

P (m|k). X and Y show m/z and P (m|k).

iterations was much longer than that of ICA-PLCA with 10 itera-

tions. This indicates that the total calculation time can be reduced

to about 1/3 without loss of performance by reducing the number of

iterations of PLCA. Thus, the proposed method can reduce the total

calculation time by using ICA.

6. RELATION TO PRIOR WORK

The work presented here has focused on PLCA for mass spectra sep-

aration. As mentioned above, there have been recently several re-

searches that apply NMF [5, 6] and PLCA [7]. In particular, PLCA

has a feature that it is easy to use statistical knowledge as sparsity

priors. However, the convergence of the method is slow, and the to-

tal calculation time is long. Thus, the method can not run in real

time, and it is difficult to apply the method to the explosives detec-

tion system in practice. As far as we know, in the domain of mass

spectrometry, there are no researches on acceleration of PLCA be-

cause, so far, it has not been necessary that signal separation is ex-

ecuted in real-time in the domain of mass spectrometry. There are

several approaches on improving the initialization process of NMF

[11, 12, 13], but these approaches have not been applied to mass

spectrometry, and it is not obvious whether these approaches can be

applied to PLCA. The proposed method makes use of ICA in the ini-

tialization process of PLCA, and reduces the total calculation time.

This point was not considered in these earlier studies.
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Fig. 6. Estimates of the probabilistic activations P (k|t). X and Y

show t and P (k|t).

7. CONCLUSION

We proposed a new method to separate mass spectra into compo-

nents of each chemical compound for explosives detection. In order

to speed up the conventional method based on PLCA, the proposed

method makes use of independent component analysis (ICA) in the

initialization process. In the experiment using the data in a real envi-

ronment, it was shown that the proposed method can reduce the total

calculation time.
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