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ABSTRACT
An ultrasonic sensor that employs moving target processing based
on differential echo processing and occupant tracking is considered
for indoor occupant presence detection. We present a simple statis-
tical model to analyze the presence detection performance of such
a sensor. The probability distributions of the differential power sig-
nal are first obtained under vacancy and occupancy conditions. We
then study the influence of occupant tracking and derive an upper
bound on the probability of false alarm. Experimental data is used
to verify that the presented analytical statistical models match actual
distributions of the differential power.

Index Terms— Ultrasonic sensor, indoor presence detection,
tracking, statistical detection model

1. INTRODUCTION

Ultrasonic sensors are commonly used for indoor occupancy sens-
ing in lighting control systems. A grid of single-element ultrasonic
sensors was used in [1] for occupant localization. An ultrasonic ar-
ray sensor was described for presence detection [2] and occupant
tracking [3]. In these systems, a pulsed sinusoidal waveform was
transmitted and the received echoes were processed using moving
target processing (based on differential echo processing) and occu-
pant tracking to derive presence information. In this paper, we de-
velop a statistical model characterizing the processed signal under
occupancy and vacancy conditions, based on which the detection
performance of such ultrasonic presence sensors is analyzed.

Typical metrics for quantifying detection performance under hy-
pothesis testing are probability of detection and probability of false
alarm. The performance of target detection systems, in particular
radar systems, has been well studied [4] - [6]. The performance of
a radar system depends strongly on the radar cross-section (RCS)
characteristics of target and clutter. In the classic paper [4] by Swer-
ling, simple statistical models for the RCS distribution of a target
have been described. The four Swerling models for a fluctuating tar-
get correspond to the two choices for the probability density function
(pdf) of target RCS and the two choices for echo fluctuation corre-
lations over radar scans. An additional model is considered for the
non-fluctuating target case. Clutter is typically characterized by a
pdf with a given average RCS. Examples for modeling clutter are
the Rayleigh, exponential, log-normal, and Weibull distribution [6,
Chapter 2]. The pdf and average RCS have been empirically calcu-
lated for several types of clutter (e.g. land, sea) and targets.

We note that while several studies exist on radar statistical detec-
tion models, and their practical validity, these are largely considered
for outdoor environments. To the best of our knowledge, similar
analysis for determining the pdf and relevant parameters in an in-
door environment does not exist, especially for ultrasonic occupant

detection systems. In this paper, we obtain statistics based on a rele-
vant parameter for the ultrasonic indoor presence sensor considered
in [1] - [3]. A natural and relevant parameter for defining a pdf is
the variance of the phase of the received signal. The variance of the
phase can be easily used to model the movement of an occupant (e.g.
small/large movement) and to model the stationarity of the environ-
ment (e.g. vibrations, air turbulence).

We describe the principle of operation of the ultrasonic pres-
ence sensor in Section 2. In Section 3, we obtain the pdf for the
received differential power. Next, in Section 4, we analyze the false
alarm probability under a typical family of tracking functions. In
Section 5, we show results from data collected in a lab experiment to
validate the analytical distribution models. Also, we analyze the im-
pact of various design parameters on detection performance. Finally,
in Section 6 we present conclusions.

2. ULTRASONIC PRESENCE SENSOR

We consider an ultrasonic presence sensor comprising of a transmit-
ter, with center frequency fc, and a single receiver at the same fre-
quency, following the principle of operation as described in [2]. Over
a transmission slot of duration Ts, the transmitter sends out pulsed
sinusoids over a duration Tp followed by a quiet period. The wave-
form is repeated with period Ts, where Ts is a duration large enough
so as to receive all echoes from within the detection region. Here we
consider the two key processing steps at the receiver. The received
echoes are processed by differential echo processing, i.e. echoes
corresponding to two consecutive transmissions slots are subtracted.
Based on the power of the differential echo signals, a coarse range-
bin corresponding to moving objects is obtained. Finally an occu-
pant tracking algorithm is used to improve the reliability of presence
detection.

2.1. Pre-processing

The received signal is a continuous analog signal at frequency fc,
and is pre-processed by digitizing, filtering and down-mixing the sig-
nal to zero frequency. Let the sampling rate for digitizing the signal
be fs and the number of samples over which the signal is filtered
be Γ. We will refer to each filtered group of samples as a range-bin
ρ = 1, . . . , R, where R =

⌊
Ts fs

Γ

⌋
.

Let the received signal during the k-th cycle be given by u(k)
(
t̃
)

where t̃ is the relative time with respect to the beginning of the k-th
cycle. After pre-processing, the signal at range-bin ρ can be written
as

r(k)ρ =
1

Γ

ρΓ∑
ν=(ρ−1)Γ+1

u(k)

(
ν

fs

)
× e

−2πi νfc
fs , ρ = 1, . . . , R.
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2.2. Differential echo processing

In the differential echo processing step, we calculate the differential
power for range-bin ρ = 1, 2, . . . , R and cycle k as

z(k)ρ =
∣∣∣r(k)ρ − r(k−1)

ρ

∣∣∣2 . (1)

2.3. Tracking processing

Assign to each range-bin ρ, a tracking score Ψ
(k)
ρ that indicates the

confidence that there is an occupant at range-bin ρ and cycle k. Let
us consider a family of tracking algorithms [3], [7] of the form

Ψ(k)
ρ = f

{
z(k)

}
+ β

∑
η

G̃ρ,ηΨ
(k−1)
η (2)

where f {·} is a scoring function and 0 ≤ β < 1 is a tracking factor.
Let G̃ be a transition matrix with (ρ, n)-th element G̃ρ,η indicating
the probability of transition of the occupant from a given range-bin
η to another range-bin ρ. Note that G̃ is the assumed model for the
occupant movement behavior.

For a given threshold value Cth, we define the false alarm prob-
ability as

Pfa = lim
k→∞

P

(
max

ρ

{
Ψ(k)

ρ

}
≥ Cth

∣∣∣H(k)
0 , H

(k−1)
0 , . . .

)
= lim

k→∞
P

(∪
ρ

{
Ψ(k)

ρ > Cth

∣∣∣H(k)
0 ,H

(k−1)
0 , . . .

})
(3)

where H
(k)
0 is the hypothesis that there is no occupant at cycle k.

Now, let us consider that at cycle k+1 an occupant enters the room.
We calculate the detection probability at cycle k+K (i.e. probability
of detecting the occupant K − 1 cycles after he/she has entered the
room). This probability is given by

PD(K) = lim
k→∞

P

(
max

ρ

{
Ψ(k+K)

ρ

}
≥ Cth∣∣∣H(k+K)

1 , . . . , H
(k+1)
1 ,H

(k)
0 , . . .

)
, (4)

where K−1 is the delay in detection and H
(k)
1 is the hypothesis that

there is an occupant at cycle k.

3. STATISTICAL DISTRIBUTION OF DIFFERENTIAL
POWER

In this section, we present the pdf of z(k)ρ under two conditions: (i)
clutter and noise; and (ii) single moving occupant, clutter and noise.
The first condition corresponds to the situation that there is no pres-
ence or no movement from the occupant. The second condition con-
siders the situation when there is a single occupant in the room.

3.1. Probability distribution in clutter and noise

Let us consider that at cycle k and range-bin ρ, the ultrasonic sen-
sor receives J echoes originating from the environment with a noise
component n(k)

ρ . The received signal can be written as

r(k)ρ =
J∑

j=1

Aje
iθk,j + n(k)

ρ . (5)

Here, Aj is the received amplitude of the j-th echo and θk,j is the
phase of the j-th echo received during the k-th cycle. Also, n(k)

ρ is
the complex noise component at cycle k and range-bin ρ given by

n(k)
ρ = Q(k)

n (ρ) + i I(k)n (ρ)

where Q
(k)
n (ρ) and I

(k)
n (ρ) are independent identically distributed

(i.i.d.) with distribution N (0, σ2
n).

Hence, from (1) and (5), the differential received power at cy-
cle k and range-bin ρ is given by

z(k)ρ =
∣∣∣ J∑
j=1

Aje
iθk,j + n(k)

ρ −
J∑

j=1

Aje
iθk−1,j − n(k−1)

ρ

∣∣∣2.
Let

Q(k)
c (ρ) =

J∑
j=1

Ajx
(k)
j +Q(k)

n (ρ)−Q(k−1)
n (ρ) ,

I(k)c (ρ) =

J∑
j=1

Ajy
(k)
j + I(k)n (ρ)− I(k−1)

n (ρ) , (6)

where x
(k)
j = cos θk,j − cos θk−1,j , y

(k)
j = sin θk,j − sin θk−1,j .

We assume that for all j, Aj ≈ A, x(k)
j are i.i.d with mean µx

and variance σ2
x, and y

(k)
j are i.i.d with mean µy and variance σ2

y .
This is a reasonable assumption because for a given range-bin, the
echoes originate from the same large object (e.g. table, floor, etc).
Then by using the central limit theorem, we have that

J∑
j=1

Ajx
(k)
j →N

(
JAµx, JA

2σ2
x

)
,

J∑
j=1

Ajy
(k)
j →N

(
JAµy, JA

2σ2
y

)
. (7)

Furthermore, the phase of an echo originating from static object
is almost identical between consecutive pulses. Hence, we assume
that for all j and for any distribution of θk−1,j , then θk,j is dis-
tributed with distribution N

(
θk−1,j , σ

2
θ

)
. Note that σ2

θ depends on
the phase variation between consecutive pulses. We have that for
small duration Ts, then σ2

θ ≪ 1. Thus, we have

µx = µy = 0 and σ2
x ≈ σ2

y ≈ σ2
θ

2
. (8)

Then, by using (7) and (8), we have that (6) becomes

Q(k)
c (ρ) → N

(
0, σ2

c

)
, and I(k)c (ρ) → N

(
0, σ2

c

)
, (9)

where σ2
c = 2σ2

n +
JA2σ2

θ
2

is the clutter and noise power.
Thus, using (9), we have the probability distribution of the dif-

ferential power at cycle k and range-bin ρ given by

pcn
(
z(k)ρ |σ2

c

)
=

1

2σ2
c

e
−

z
(k)
ρ

2σ2
c . (10)

3.2. Probability distribution with moving occupant, clutter and
noise

Now, let us consider that at cycle k and range-bin ρ, the sensor re-
ceives an echo from a moving occupant, J echoes originating from
the environment and a noise component. Hence

r(k)ρ = Beiϕk +

J∑
j=1

Aje
iθk,j + n(k)

ρ .

Here, B and ϕk are the amplitude and phase of the received echo
originating from the moving occupant, respectively.
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Hence, we have that the differential received power at cycle k
and range-bin ρ is given by

z(k)ρ =

∣∣∣∣∣Beiϕk +

J∑
j=1

Aje
iθk,j + n(k)

ρ

−Beiϕk−1 −
J∑

j=1

Aje
iθk−1,j − n(k−1)

ρ

∣∣∣∣∣
2

,

=
(
B [cosϕk − cosϕk−1] +Q(k)

c (ρ)
)2

+
(
B [sinϕk − sinϕk−1] + I(k)c (ρ)

)2
. (11)

Due to space limitations, we omit the derivation for the proba-
bility distribution pocn

(
z
(k)
ρ |B, p∆ϕ, σ

2
c

)
of the received power at

cycle k and range-bin ρ due to the echo of a moving occupant with
amplitude B and phase distribution p∆ϕ, and provide the final result,

pcn
(
z(k)ρ |σ2

c

)
E∆ϕ

e− 4B2 sin2 (∆ϕ
2 )

2σ2
c I0


∣∣2B sin ∆ϕ

2

∣∣
σc

√
z
(k)
ρ

σc


 .

(12)
Note that if for a given range-bin ρ, the clutter power is

dominant, and thus σ2
c ≈ JA2σ2

θ
2

, then the term |2B sin ∆ϕ
2 |

σc
≈∣∣∣ 4B

A
√
J

∣∣∣ sin ∆ϕ
2

σθ
. Further, we have that A and B are highly corre-

lated because they both are proportional to the transmitted power
and so the ratio

∣∣∣ 4B

A
√

J

∣∣∣ is independent of the transmitted power.

Hence, in clutter-dominant environments, pocn
(
z
(k)
ρ |B, p∆ϕ, σ

2
c

)
is independent of the transmitted power.

4. TRACKING ALGORITHM AND PROBABILITY OF
FALSE ALARM

In this section, we analyze the effect in the probability of false alarm
of the tracking algorithm as defined in (2).

4.1. Statistics of objects in the clutter

Consider the R possible range-bins. The probability that there is an
echo from an object in a given range-bin ρ is assumed to follow a bi-
nomial distribution, i.e. the probability that there is an echo coming
from an object at range-bin ρ is equal to pec (eρ = 1) = p̃ec where
eρ = 1 indicates that there is an echo originating from range-bin ρ.

Furthermore, we assume that (i) the location distribution of ob-
jects in the clutter does not change with time and (ii) the echo of
each object is received within a single range-bin. These assumptions
are reasonable because (i) the room environment does not change
substantially within short time durations and (ii) in general, a range-
bin is chosen larger than the pulse duration Tp. Additionally, we
assume a simplified model for the amplitude of the received echoes.
Whenever there is an echo originating from range-bin ρ, the received
amplitude Aρ of this echo is given by Aρ = A0ρ

−α where A0 is the
amplitude of the transmitted waveform and α is the attenuation fac-
tor (e.g. α = 1).

4.2. Occupancy model

Let us consider a simple occupancy model, with initial vector
g =

[
g1 g2 . . .

]
where gρ indicates the probability that an occu-

pant enters in range-bin ρ. Let the actual transition probability
matrix be denoted by G, with (ρ, n)-th element Gρ,η being the

probability of transition of the occupant from a given range-bin η
to another range-bin ρ. We assume that the echo from the moving
occupant is received within a single range-bin.

4.3. Probability of false alarm

We choose a simple scoring function that is approximately propor-
tional to the log-likelihood function [7] (i.e. logarithmic of ratio
between (12) and (10)). Simplifying, we have

f
{
z(k)ρ

}
=

z
(k)
ρ

σ2
c (ρ, eρ)

where

σ2
c (ρ, eρ) =

{
2σ2

n +
JA2

ρσ
2
θ

2
, eρ = 1

2σ2
n , otherwise

is the clutter and noise power at range-bin ρ. Further, we assume
that Ĝ = G, i.e. we have complete knowledge of the behavior of
the occupant.

We can further upper bound (3) by

Pfa ≤ lim
k→∞

∑
ρ

P
(
Ψ(k)

ρ > Cth

∣∣∣H(k)
0 , . . .

)
(13)

where

P
(
Ψ(k)

ρ ≥ Cth

∣∣∣H(k)
0 , . . .

)
=

∫
Ψ

(k)
ρ ≥Cth

p
(
Ψ(k)

ρ

∣∣∣H(k)
0 , . . .

)
dΨ(k)

ρ (14)

and p
(
Ψ

(k)
ρ

∣∣∣H(k)
0 , . . .

)
is the probability distribution of tracking

score at cycle k and range-bin ρ. This probability distribution can
be calculated as∫

Ω

pcn
(
z(k)ρ |σ2

c (ρ, eρ)
)k−1∏
s=0

∏
η

pcn
(
z(s)η |σ2

c (η, eη)
)∏

ϱ

pec (eϱ) dΩ

(15)
where eρ = 1 if and only if there is an echo originating from range-
bin η, and Ω is the region that satisfies

Ψ(k)
ρ =

z
(k)
ρ

σ2
c (ρ, eρ)

+

k−1∑
s=0

βk−s
∑
η

[
Gk−s

]
ρ,η

z
(s)
η

σ2
c (η, eη)

≥ 0.

Using the probability distribution defined in (10) and the change
of variables

z(k)ρ = σ2
c (ρ, eρ)

(
Ψ(k)

ρ +

k−1∑
s=0

βk−s
∑
η

[
Gk−s

]
ρ,η

z
(s)
η

σ2
c (η, eη)

)
,

z(s)η = z(s)η , η ̸= ρ or s ̸= k,
eη = eη, ∀η,

with Jacobian equal to 1
σ2
c (ρ,eρ)

, then we can rewrite (15) as

∫
Ω

e
− 1

2
Ψ

(k)
ρ −

k−1∑
s=0

∑
η

(
1−βk−s[Gk−s]

ρ,η

) z
(s)
η

2σ2
c(ρ,eη)

2
k−1∏
s=0

∏
η

2σ2
c (η, eη)

∏
ϱ

pec (eρ) dΩ

and so the probability in (14) becomes(
k−1∏
s=0

∏
η

1

1− βk−s
[
Gk−s

]
ρ,η

)
e−

Cth
2

−

[
k−1∑
s=0

∑
η

βk−s
[
Gk−s

]
ρ,η

1− βk−s
[
Gk−s

]
ρ,η

e
− Cth

2βk−s[Gk−s]
ρ,η

×
k−1∏
v=0

∏
ϱ ̸=η

βk−s
[
Gk−s

]
ρ,η

βk−s
[
Gk−s

]
ρ,η

− βk−v
[
Gk−v

]
ρ,ϱ

]
. (16)
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Note that the distribution in (16) is independent of the distri-
bution of objects in the clutter and noise (i.e. σ2

c (ρ, eρ)). This is
because of the definition of the tracking function in (2).

Finally, using (16), we have an upper bound on the false alarm
probability from (13). Note that obtaining an expression for the de-
tection probability using (12) is intractable and hence we do not pro-
vide analysis, but resort to simulations.

5. RESULTS

5.1. Experimental results

We first compare the analytical probability distribution of the dif-
ferential power under noise and clutter, (10), with the probability
distribution obtained from real measurements. These measurements
were obtained in an experimental office lab using a prototype ul-
trasonic sensor [3] installed in a ceiling-mounted configuration. We
collected the received signal at a given range-bin ρ = 16 (a table was
situated in this range-bin). The received signal was pre-processed to
obtain r

(k)
16 and the differential power, z(k)16 . Note that the variance of

the clutter, σ2
c , increases with the separation between pulses. This is

because the environment is more likely to change with larger spac-
ing between pulses. Hence, we performed several experiments with
different separation between pulses, Ts = 0.05, 0.1, 0.5 and 1 sec-
onds. In Fig. 1, we plot the distribution of the normalized differential
power at range-bin 16, z(k)16 /(r

(k)
16 )2, and the distribution from (10)

for each case. The standard deviation of the clutter, σc(16, 1), was
estimated from the measurements. We note that both distributions
are quite close, validating our model distribution.
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s
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Fig. 1. Comparison between analytic and real pdf.

5.2. Numerical results

We then performed a Monte Carlo simulation using different values
for tracker parameters: K and β. We evaluate the performance for
each set of parameters by using the false alarm probability and de-
tection probability as performance metrics. The parameters chosen
for our simulations are: 5 range-bins (i.e. R = 5); initial occupancy
distribution, g =

[
0 0 0 0 1

]
; transition probability matrix

G =


0.75 0.25 0 0 0
0.25 0.5 0.25 0 0
0 0.25 0.5 0.25 0
0 0 0.25 0.5 0.25
0 0 0 0.25 0.75

 ;

clutter power, JA2σ2
θ

2
= 0.04; noise power 2σ2

n = 0.01; amplitude
of echo originating from moving occupant, B = 1; p∆ϕ follows dis-
tribution N (0, 1) (in radians); probability of an echo is independent
of neighboring locations, and p̃ec = 0.5.
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Fig. 2. Performance comparison for different values of K.
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Fig. 3. Performance comparison for different values of β.

We simulated 106 instances for each set of parameters. First, we
fixed the values of k = 100 and β = 0.9. Note that when k = 100,
then Pfa converges to its maximum value. We analyzed PD(K) and
Pfa for different delays K = 1, 2, 3 and 5. We can see in Fig. 2 that
a larger K has a higher PD(K) but also a larger delay (i.e. large K).
We consider K = 3 cycles to be a reasonable delay for our system.

Finally, we consider the effect of different values of β =
0.2, 0.4, 0.8, 0.9 for K = 3. It can be seen in Fig. 3 that the
relation between PD(3) and Pfa improves for large β (i.e. large
memory of past observations).

6. CONCLUSIONS

We presented an analytical model for the pdf of the differential
power in an ultrasonic presence sensor. We validated our model
for an empty room using experimental data. We further analyzed
the signal output under a simple class of tracking algorithms. The
false alarm probability was analyzed, and by using Monte Carlo
simulations, the effect of different tracker parameters on the relation
between the false alarm probability and detection probability was
studied. This analytical work may be extended to analyze detection
performance of radar systems [8] - [10] for other indoor applications.
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