
HD VIDEO DECODING SCHEME BASED ON MOBILE HETEROGENEOUS SYSTEM
ARCHITECTURE

Yu-Jung Chen, Yu-Sheng Lin, Hsin-Fang Wu, Chia-Ming Chang, Shao-Yi Chien

Graduate Institute of Electronics Engineering, National Taiwan University
1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan, R.O.C.

ABSTRACT

Efficiency for mobile devices becomes important than ever
due to the demanding multimedia applications. Take HD
video decoding for example, it is getting challenging as the
resolution increases. To enhance efficiency, HSA (Heteroge-
neous System Architecture) is proposed to drive a new era of
computation. Based on this idea, we develop a heterogeneous
architecture, which is composed of a mobile GPU (Graphics
Processing Unit) with a proposed configurable filtering unit
and a CPU to coordinate the decoding flow. The feasibility of
H.264/MPEG-4 HD video decoding pipeline for the proposed
architecture is verified. Furthermore, according to the cor-
responding GPU hardware model, the estimated processing
time of inverse quantization, inverse transform and motion
compensation for decoding a 1080p video can reach to 16ms
and 11ms per frame for MPEG-4 and H.264 respectively.

Index Terms— Heterogeneous computing, GPU, video
decoding

1. INTRODUCTION

Nowadays, owing to the advances in programmable graphics
hardware, GPUs (Graphics Processing Units) have become
indispensable either for dedicated rendering applications or
general purpose computing workload. To improve the com-
munication and control flow between CPU and GPU, several
SoC IP vendors, including AMD, ARM, Qualcomm, Medi-
aTek, Samsung and etc., organize HSA (Heterogeneous Sys-
tem Architecture) foundation to establish heterogeneous com-
puting architecture. The idea behind HSA is quite similar
to AMD Fusion on desktop system, as illustrated in Fig. 1.
In this architecture, CPU and GPU are tightly-coupled, and
communicate through shared memory space. Regarding to
architectural features, CPU excels in serial control flow and
multi-task parallelism; GPU outperforms in vector process-
ing to gain data parallelism. Aimed at demanding workloads,
such heterogeneous computing architecture can exploits both
features to deliver processing efficiency.

As the storage and network bandwidth grow, HD video
decoding turned out to be a fundamental entertaining applica-
tion for mobile devices. However, decoding HD video con-

GPU
(Data Parallelism)

CPU
(Task Parallelism)

Shared
Memory

PCIe Hardware
Accelerator HDMI

DRAM

L2 Cache

DRAM
Controller

Display
Controller

Fig. 1. Simple illustration of AMD Fusion.

tents in real-time is challenging for mobile devices. In this
work, we simulate a heterogeneous computing architecture
for mobile devices. To exploit the multiprocessor parallelism
in GPU, CPU is responsible for coordinating decoding flow
and dispatching threads. Decoding stages, such as inverse
quantization and inverse transform, are scheduled as parallel
vector threads for GPU. Moreover, a proposed modified con-
figurable filtering unit is used for supporting fractional mo-
tion compensation, which is proven to be time-consuming in
a decoding pipeline. Considering the efficiency, the decoding
stages, which are not suitable for GPU (e.g., entropy decod-
ing and deblocking filtering), are left for CPU to simulate. To
quantify performance, the corresponding GPU RTL model is
synthesized with TSMC 65nm technology and operating fre-
quency can reach to 300MHz. The estimated processing time
of inverse quantization, inverse transform and motion com-
pensation in 1080p video decoding process can reach to 16ms
and 11ms per frame for MPEG-4 and H.264 respectively.

2. RELATION TO PRIOR WORKS

2.1. Prior Works

As the coding standard evolves, algorithm complexity grows
to achieve better visual quality. Real-time requirement is
harder to meet. Besides pure ASIC solutions, researchers
accelerate video coding in various processor architectures.
General-Purpose Computation on GPU (GPGPU) is a pop-
ular means of accessing the processing power in commodity

2761978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

GPUs through programming models such as shading lan-
guages (e.g., Cg, OpenGL and DirectX), OpenCL and CUDA.
A well-studied problem in video codec for GPGPU is motion
estimation (ME), which is the most demanding stage of the
codec. Thread scheduling and memory bandwidth utilization
for ME are highly optimized with CUDA[1][2]. In addition,
MPEG-2 decoding pipeline has been accelerated and adapted
to conventional graphics pipeline with OpenGL and Cg [3].

From the perspective of processor architecture, Chien et.al
[4] propose a video accelerating instruction set and config-
urable memory array to reduce off-chip memory bandwidth
for multimedia stream processor. Targeting at variable sized
memory block fetch and ALU utilization, Lo et.al [5] propose
an improved SIMD (Single Instruction Multiple Data)-based
video processor. Besides, Cell Boardband Engine is a specific
heterogeneous processor architecture which is composed of
SIMD-based architecture—SPE (Synergistic Processing Ele-
ment), and PPE (Power Processor Element). Numerous im-
plementations and techniques for accelerating video decoding
pipeline are discussed and developed [6][7][8].

2.2. Comparison with Prior Works

We summarize the features of prior works and classify them
into three categories.

(a) Optimize threads scheduling and memory bandwidth uti-
lization on GPUs [1][2][3].

(b) Microarchitecture design and implementation [4][5].

(c) Implementation and performance optimization on hetero-
geneous processor architecture [6][7][8].

Compared with prior works, our proposed architecture is ac-
tually featured with these three categories. First, the vec-
tor thread scheduling of GPU is tailored for the decoding
pipeline. Second, the microarchitecture of configurable filter-
ing unit is modified from conventional texture fetch instruc-
tion. Third, the proposed decoding pipeline is based on gen-
eral heterogeneous system architecture, which is composed
of CPU and GPU. Such general heterogeneous architecture
would probably dominate future computing trend.

3. PROPOSED VIDEO DECODING SCHEME

3.1. MPEG-4/H.264 Decoding Pipeline

As shown in Fig. 2, a typical decoding pipeline is composed
of entropy decoding, inverse quantization, inverse transform,
motion compensation and deblocking filtering. For MPEG-4,
after acquiring decompressed video stream through entropy
decoding (VLD), the decoder executes inverse quantization
which defines two modes—H.263 and MPEG-4 mode. Eq.(1)
shows the H.263 mode, where a 5-bit integer iQ is associated
with variable bitrate, and in[i] represents the i-th coefficient

Entropy
Decoding

Bitstream Inverse
Quantization

Inverse
Transform

Motion
Compensation

Motion Vector

Deblocking
Filter

(H.264)

Decoded
Frames

Intra

Inter

(CPU)
(GPU)

Vector Threads
(GPU)

Vector Threads

(CPU)

(GPU)
Vector Threads + Modified CFU

Fig. 2. A typical video decoding pipeline (with H.264 in-loop
deblocking filter).

Integer Pixel
Half Pixel

Quarter Pixel

A

B C

Fig. 3. Sub-pixel motion compensation

of the decompressed macroblock after VLD. For MPEG-4
mode, an extra quantization table mat is to provide better
quality. As eq.(2) shows, (a) is for inter macroblock and (b)
is for intra macroblock. Next, a general 8×8 2-D IDCT is
applied as inverse transform. Besides integer-pixel motion
compensation, sub-pixel motion compensation is supported
to half-pixel precision. Last, a post-processing deblocking
filter is optional for enhancing visual quality.

2× iQ× in[i] + 2biQ/2c (1){
(in[i]×mat[i]× iQ)/8 (a)
[(2in[i] + sgn(in[i]))×mat[i]× iQ]/16 (b)

(2)

H.264 defines advanced features than MPEG-4. Compared
with MPEG-4, the adopted entropy coding technique in
H.264, such as Context Adaptive Variable Length Decod-
ing (CAVLD), has higher coding performance. For levels of
inverse quantization, H.264 has six pre-defined tables, and
these tables are similar to mat defined in MPEG-4. Besides
2-D DCT, H.264 adopts integer transform, which requires
only addition, subtraction and bit-shifting, has lower compu-
tation effort.

Sub-pixel motion compensation is also adopted in both
MPEG-4 and H.264 to enhance visual quality, as shown in
Fig.3. To get half-pixels, MPEG-4 uses bilinear filter, while
H.264 utilizes a six-tap filter for either horizontal or vertical
direction (A and B in Fig.3). The centering half-pixel (C in
Fig.3) are then obtained by applying the same filter in both
directions. Furthermore, quarter-pixels are acquired by the
rounded average of two neighboring pixels. Finally, H.264
adopts an in-loop deblocking filter, and the filtered results are
later used for motion compensation.

2762

8x8
Pixel Block

CPU

Vec 0

Vec 7

...

Vec 6

(1). Partition
Pixel Block

SIMD #0

Decode

Vector ALU

Write Back

SIMD #1

Decode

Vector ALU

Write Back

SIMD #N

Decode

Vector ALU

Write Back

Constant Memory

Shared
Memory

(2). Store into
Shared Memory

...

...

GPU

(4a). Pass 1-Shared data fetch with thread ID

(3). Thread dispatching
Vector

Thread #0
Vector

Thread #1
Vector

Thread #M

(4b). Pass 2-Reordered shared data fetch
with thread ID

SIMD #0

Decode

Vector ALU

Write Back

SIMD #1

Decode

Vector ALU

Write Back

SIMD #N

Decode

Vector ALU

Write Back

Constant Memory (IQ Table, IQ constant...)

Shared
Memory

(3). Thread dispatching
Vector

Thread #0
Vector

Thread #1
Vector

Thread #M

...

...

GPU

(4). Shared data fetch with thread ID

8x8
Pixel Block

CPU

Vec 0

...

(1). Partition
Pixel Block

(2). Store into
Shared Memory

Vec 1

Vec 14 Vec 15
Vec 12 Vec 13

(a). Flow illustration of inverse quantization (b). Flow illustration of inverse transformation

Fig. 4. Illustration of MPEG-4 inverse quantization (IQ) and inverse transform (IDCT).

3.2. Proposed Techniques

The decoding pipeline is partitioned into stages for either
GPU or CPU as Fig.2 shows. According to characteristics of
computation for each stage, we discover that inverse quan-
tization, inverse transformation and motion compensation
are efficient in SIMD architecture. Based on our developed
GPU architecture, which is composed of four-lane SIMD
processors, CPU can dispatch parallelized vector threads
to gain both thread parallelism (multiprocessors) and data
parallelism (SIMD microarchitecture). These SIMD proces-
sor are equipped with our previous proposed Configurable
Filtering Units [9] with dedicated modifications for motion
compensation.

3.2.1. Inverse quantization–IQ

We categorize inverse quantization into two types of opera-
tions. Type I: Manipulating decompressed pixel blocks with
a constant value; Type II: Manipulating decompressed pixel
blocks with an inverse quantization table. Take MPEG-4 as an
example, Fig. 4 (a) illustrates how we utilize the vector oper-
ation. The 8 × 8 pixel block is first divided to sixteen vec4
(four-component vectors), and each vector is dispatched to a
SIMD processor. Based on the stream type, CPU is respon-
sible for preparing corresponding coefficients for IQ, either a
pre-defined table or merely constant values. The number of
dispatched vector thread can be configured, and scheduled by
CPU. That is, if we have sixteen SIMD processors, 8×8 pixel
block for MPEG-4 inverse quantization can be completed at
once. The mechanism for H.264 inverse quantization is simi-
lar except the block size is changed to 4 × 4 and the block is
divided to four vec4.

3.2.2. Inverse transform–IT

For MPEG-4, a two-pass butterfly structured [10] IDCT is
adopted in this work. If we viewed the block as an 8× 8 ma-
trix, the IDCT can be described as follow: first, the 1D-IDCT
is applied to each row, and then the 8×8 block are transposed.
The inverse transformed result is obtained after applying the

procedure again. Fig. 4 (b) illustrates the proposed data flow
with a four-lane SIMD architecture. First the 8×8 block is di-
vided into eight rows and each row is processed concurrently,
where eight coefficients are divided into two four-coefficient
bundles. With a four-channel SIMD processor, these scalar
operations can be executed at once.

Instead of the 8 × 8 IDCT block size in MPEG-4, H.264
adopts inverse integer transform with smaller block size
(4 × 4). This yields simpler coefficients and is easier to cal-
culate. Shift operation can replace the multiplication. In the
inverse integer transform, the de-quantized macroblock needs
to be divided into several 4× 4 sub-blocks first for Hadamard
matrix. The scheduling scheme is similar to MPEG-4. The
4 × 4 sub-block is divided to four four-component vectors.
Each row/column operation requires only one component-
wise shift and summation to acquire output.

3.2.3. Motion compensation–MC

In our developed architecture, texture filtering is performed
with a texture unit to access texels from the texture buffer by
a configurable filtering unit [9] with various general filtering
patterns. For sub-pixel motion compensation, we proposed
a modified configurable filtering unit to enhance the perfor-
mance. However, the filtering coefficients differ according to
the sub-pixel coordinates, especially for quarter-pixels. As
previously mentioned, each quarter-pixel is obtained through
averaging two neighboring pixels. These two neighboring
pixels can either be integer- or filtered half-pixel depending
on the quarter-pixel coordinates. Due to various coefficient
configurations for sub-pixel coordinates, directly obtaining
quarter-pixel among parallel threads is inefficient. Conse-
quently, the modified configurable filtering unit can fetch ei-
ther integer- or half-pixel coordinate with specified filtering
coefficients. Fig. 5 illustrates our configuration of the pro-
posed filtering unit, a 6-tap symmetric filter is employed to
the neighboring pixels. Applying corresponding filtering co-
efficients, filtered sub-pixel either in H.264 or MPEG-4 can
be obtained through this architecture.

While H.264 defines quarter-pixel motion compensation,

2763

SIMD #N

Decode

Vector ALU

Write Back

tex2D, sampling coordinate, dest.

Configurable Filtering Unit

Fetch
Unit

Filter
ALU

(1). Issue texture filtering instruction

Reference
Frame

(2). Fetch corresponding
Ref. pixels

(3). Return filtered sub-pixel

MUL

P0

C0

MUL

P1

C1

MUL

PN

CN

...

ADD

ADD

... ADD

...

...

Filter ALU

Fig. 5. Configuration of proposed modified configurable fil-
tering unit.

the fetching process is turned into a two-pass filtering pro-
cedure in the proposed architecture. In the first pass, one of
the required half-pixel is first fetched, and the filtered value
is stored in registers. In the second pass, another filtered
half-pixel is fetched. After averaging and rounding, filtered
quarter-pixel value is obtained.

4. EVALUATION

Based on the proposed architecture, we simulate and compare
visual quality of our implementation with Xvid and H.264
JM reference software. To evaluate the decoding quality with
these standards, we encode the video sequence by using ref-
erence software first and decode the compressed bitstream
through the reference software and our software-simulated ar-
chitecture respectively. Fig. 6 shows the PSNR results for
1080p HD video sequence, and the intra-frame refresh rate
is 32. MPEG-4 simple profile (SP) and H.264 baseline pro-
file (BP) is adopted for evaluation. It shows that our im-
plementation of H.264 suffers much less PSNR drop than
that of MPEG-4. The main reason for the PSNR drop is en-
coder/decoder mismatch in inverse transform. Modern codecs
have adopted fixed-point transform for speed consideration.
Xvid MPEG-4 codec adopts an asymmetric fixed-point IDCT
approximation. However, we adopt symmetric pure floating-
point operation to fit our SIMD processor. The rounding error
is raised from the floating-point arithmetic units and causes
inverse transform mismatch.

To evaluate the performance on our proposed architecture,
the total execution time of inverse quantization, inverse trans-
form and motion compensation are estimated by the hardware
model. Because entropy decoder and deblocking filter are
simulated with CPU, the execution time for these two stages is
not included. The estimated execution time can illustrate the
margin left for achieving real-time requirement. Due to the
configurable task dispatching, the number of SIMD proces-
sor can be scaled to boost performance. Our SIMD processor
architecture has a corresponding RTL model and synthesized
with TSMC 65nm technology. The operating frequency can
reach to 300MHz. For decoding videos in 1080p, the esti-
mated execution time for MPEG-4 and H.264 are shown in
Table. 1. The maximum speed-up factor depends on the num-

Fig. 6. The simulated PSNR result for H.264 BP and MPEG4
SP.

ber of threads we use. It also shows that the speed-up factor
saturates when we scale the number of SIMD processors to
16.

Codec Number of cores
4 8 16

H.264 68.1% 34.1% 23.4%
MPEG-4 95.4% 47.7% 37.5%

Table 1. Estimated 30fps operation percentage of proposed
architecture versus the number of SIMD processors for de-
coding a 1080p frame. Because the upper bound of decoding
a video block is 8, the decoding time can be reduced by 50%
while the number of SIMD cores is increased from 4 to 8.
However, if we further increased the number of cores to 16,
the efficiency boost will only be 22 and 31% for H.264 and
MPEG4, respectively.

5. CONCLUSIONS

Previous similar works mainly focused on desktop GPU. In
this work, we shows that a mobile GPU can support 1080p
video without a dedicated video decoder. By simulating a het-
erogeneous computing composed of a mobile GPU with pro-
posed configurable filtering unit and a CPU for coordinating
decoding flow, we verify the compatibility and visual qual-
ity of the proposed architecture. The estimated processing
time of inverse quanti- zation, inverse transform and motion
compensation for 1080p video decoding can reach to 16ms
and 11ms per frame for MPEG-4 and H.264 respectively with
eight SIMD processors configuration.

2764

6. REFERENCES

[1] Shang-Te Yang, Tsung-Kai Lin, and Shao-Yi Chien,
“Real-time motion estimation for 1080p videos on
graphics processing units with shared memory opti-
mization,” in Signal Processing Systems, 2009. SiPS
2009. IEEE Workshop on, oct. 2009, pp. 297 –302.

[2] Nagai-Man Cheung, Xiaopeng Fan, O.C. Au, and Man-
Cheung Kung, “Video coding on multicore graphics
processors,” Signal Processing Magazine, IEEE, vol.
27, no. 2, pp. 79 –89, march 2010.

[3] Bo Han and Bingfeng Zhou, “Efficient video decod-
ing on gpus by point based rendering,” in Proceedings
of the 21st ACM SIGGRAPH/EUROGRAPHICS sym-
posium on Graphics hardware, New York, NY, USA,
2006, GH ’06, pp. 79–86, ACM.

[4] Shao-Yi Chien, You-Ming Tsao, Chin-Hsiang Chang,
and Yu-Cheng Lin, “An 8.6 mw 25 mvertices/s 400-
mflops 800-mops 8.91 mm multimedia stream proces-
sor core for mobile applications,” Solid-State Circuits,
IEEE Journal of, vol. 43, no. 9, pp. 2025 –2035, sept.
2008.

[5] Wing-Yee Lo, D.P. Lun, Wan-Chi Siu, Wendong Wang,
and Jiqiang Song, “Improved simd architecture for high
performance video processors,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 21,
no. 12, pp. 1769 –1783, dec. 2011.

[6] Chi Ching Chi, Ben Juurlink, and Cor Meenderinck,
“Evaluation of parallel h.264 decoding strategies for
the cell broadband engine,” in Proceedings of the
24th ACM International Conference on Supercomput-
ing, New York, NY, USA, 2010, ICS ’10, pp. 105–114,
ACM.

[7] Michael A. Baker, Pravin Dalale, Karam S. Chatha, and
Sarma B.K. Vrudhula, “A scalable parallel h.264 de-
coder on the cell broadband engine architecture,” in
Proceedings of the 7th IEEE/ACM international confer-
ence on Hardware/software codesign and system syn-
thesis, New York, NY, USA, 2009, CODES+ISSS ’09,
pp. 353–362, ACM.

[8] Yongjin Cho, Seungkyun Kim, Jaejin Lee, and Heon-
shik Shin, “Parallelizing the h.264 decoder on the cell
be architecture,” in Proceedings of the tenth ACM inter-
national conference on Embedded software, New York,
NY, USA, 2010, EMSOFT ’10, pp. 49–58, ACM.

[9] Chih-Hao Sun, Ka-Hang Lok, You-Ming Tsao, Chia-
Ming Chang, and Shao-Yi Chien, “Cfu: multi-purpose
configurable filtering unit for mobile multimedia appli-
cations on graphics hardware,” in Proceedings of the

Conference on High Performance Graphics 2009, New
York, NY, USA, 2009, HPG ’09, pp. 29–36, ACM.

[10] Alan V. Oppenheim, Ronald W. Schafer, and John R.
Buck, Discrete-Time Signal Processing, Prentice-Hall,
1984.

2765

