SOFT-CORE STREAM PROCESSING ON FPGA: AN FFT CASE STUDY

Peng Wang, John McAllister, Yun Wu

Institute of Electronics, Communications and Information Technology (ECIT),
Queens University Belfast, UK

ABSTRACT

The increasing design complexity associated with modern
Field Programmable Gate Array (FPGA) has prompted the
emergence of “soft’-programmable processors which attempt
to replace at least part of the custom circuit design problem
with a problem of programming parallel processors. Despite
substantial advances in this technology, its performance and
resource efficiency for computationally complex operations
remains in doubt. In this paper we present the first recorded
implementation of a softcore Fast-Fourier Transform (FFT)
on Xilinx Virtex FPGA technology. By employing a stream-
ing processing architecture, we show how it is possible to
achieve architectures which offer 1.1 GSamples/s throughput
and up to 19 times speed-up against the Xilinx Radix-2 FFT
dedicated circuit with comparable cost.

Index Terms— FPGA, Fast-Fourier Transform (FFT),
streaming processing architecture

1. INTRODUCTION

The computational capacity and memory bandwidth capabili-
ties of modern Field Programmable Gate Array (FPGA) make
them ideal host devices to high performance DSP circuits,
however the scale of modern devices makes the complexity
of designing custom circuits for these applications increas-
ingly unproductive. This has resulted in the emergence of
software-programmable ’soft’ processor architectures which
attempt to replace the circuit design problem at least partially
with a programming problem for parallel processor architec-
tures. However, doubts remain about this design approach de-
spite major advances in specific application domains, such as
detection for Multi-Input Multi-Output (MIMO) wireless [1],
where performance and cost are actually beyond that which
dedicated circuits can achieve.

Specifically, the performance bounds and resource effi-
ciency of this approach for a wide-range of DSP operations,
such as the Fast-Fourier Transform (FFT) critical to modern
signal processing applications, is unproven. Operations such
as FFT are highly computationally demanding and their per-
formance on soft processors such as [2, 3] is unrecorded.

This work is supported by UK Engineering and Physical Sciences Re-
search Council contract number EP/H051155/1

978-1-4799-0356-6/13/$31.00 ©2013 IEEE

2756

In this paper, we conduct a case study to provide the first
recorded implementations of FFT on softcore processors, and
to measure its performance and resource efficiency as com-
pared to dedicated circuits. Specifically, this paper extends
previous work [1] which created the highest performance
softcore processor on record to make two contributions :

1. A novel softcore stream processing architecture for
FPGA DSP kernels is presented which enables fac-
tors of 7.4 speed-up and 5.4 improvement in resource
efficiency compared to existing softcore architectures.

2. The proposed architecture is used to benchmark FFT
implementations with up to a factor 19 speed-up with
comparable resource efficiency.

The remainder of the paper is organised as follows. Sec-
tion 2 motivates the background and related work, before Sec-
tions 3 and 4 detail the streaming processor and multicore ar-
chitectures for FFT; implementation results are presented in
Section 5.

2. BACKGROUND AND RELATED WORK

The DFT X (k) of an N-element data sequence of data x(n)
is:

N-1
X(k)=> a(mWr",0<k<N-1 (1)
n=0
where Wy = e 927/N is a twiddle factor. Directly

computing (1) leads to O(N?) complexity; the FFT exploits
the symmetry and periodicity of the twiddle factors to en-
able a computationally efficient O(N log,. N) alternative for
a radix-r FFT. Despite this complexity reduction, the FFT
is still a computationally demanding operation whose high-
performance embedded implementation has prompted much
research interest. The majority of this work addresses ded-
icated circuit implementations, e.g. [4, 5, 6, 7] or media
processors [8, 9]. However, on FPGA only dedicated circuit-
based designs such as [10] have been reported.

Modern FPGA hosts a vast array of computational and
memory resources, to the extent that the complexity of the
predominant dedicated-circuit design approach has become

ICASSP 2013

very large. This has prompted the emergence of ’soft’ proces-
sor architectures, hosted on the FPGAs programmable fabric,
which enable a partial redefinition of the design approach to
incorporate programmable processors customised to the ap-
plication, rather than dedicated circuits. For instance, the vec-
tor processor in [3] is scalable to allow a varying number of
processing lanes, whilst the approach in [11] adopts a multi-
core processing solution for FPGA. The work in [1] exploits
massively parallel networks of fine-grained FPGA Process-
ing Elements (FPEs) to achieve very high performance imple-
mentation of detectors for MIMO systems. However, to date
there is no recorded realisation of FFT on these architectures.

The FPE-based architecture in [1] offers the highest com-
putational performance of all these options; the performance
of a 256-point FFT on a 8-FPE Multiple Instruction Multiple
Data (MIMD) architecture is compared to that of the Xilinx
Radix-2 FFT component in Table 1.

Table 1. 8-FPE 256-point FFT

T T/LUT

LUTs DSP48Es (MSample/s) (x10-3)
FPE 2,296 8 30.5 13.3
Xilinx 621 6 61.9 99.7

The performance and efficiency of this realisation as com-
pared to the Xilinx component is disappointing, exhibiting
less than 50 % of the absolute throughput and only 13% of
of the resource efficiency. There are three major limitations
of the FPE-based architecture which lead to this situation:

1. The load-store architecture and lack of forwarding fa-
cility results in a large number wasted cycles due to
pipeline bubbles; specifically, 48% of the instructions
are wasted on NOPs and load/store instructions.

2. The 16-bit real ALU requires 10 cycles for a butterfly.

3. The simple FIFO-based communication network is not
flexible enough to support the complex communication
pattern of FFT, resulting in 24 inter-FPE FIFOs costing
28% of total LUTs.

Apparently, even the highest performing softcore process-
ing solution for Xilinx FPGA on record is still limited in per-
formance and resource efficiency compared to dedicated cir-
cuit solutions. In Section 3 we propose a modified softcore
architecture which resolves this situation.

3. SOFT-CORE STREAM PROCESSING UNIT FOR
FPGA FFT

3.1. SPU Architecture

To overcome the wasted cycle inefficiencies in the FPE-
based architecture when implementing the FFT, a Stream

Processor Unit (SPU) is proposed as the foundation unit for
implementation of applications of this type. The SPU is a
width-configurable Single Instruction Multiple Data (SIMD)
processor composed of between 1 - 32 Processing Elements
(PEs), shown in Fig. 1.

] Result
select

Fig. 1. SPU Processing Core

The ALU is implemented using Xilinx DSP48E slices;
arithmetic operations employ four-address instructions to
match the three-input, single-output DSP48E multiply-add
computation pattern. Furthermore, the inherent forwarding
path in the DSP48E can be exploited to enable instruction-
controlled data forwarding.

In contrast to the load-store FPE architecture, the SPU
incorporates three kinds of memory, which can be optionally
included at design time to best match the architecture to the
needs of the application.

1. 32-entry or 64-entry 3-read 1-write Register File (RF)
in each SPU PE;

2. Dual-port RAM Data Memory (DM) in each SPU PE;
3. Shared Memory (SM) RAM accessible by all SPU PEs.

In addition, the SPU memory architecture is directly-
accessed; hence, rather than all ALU data access proceeding
via the RF, as is the case in the FPE-based architecture, arith-
metic instructions can choose from either RF, DM or SM
storage directly, with the result written to DM. Note that in
Fig. 1 the flexible operand FlexA is connected to DSP48E
port A and applicable for both add and multiply operations.
This extends the use of data forwarding to memory opera-
tions, further reducing the potential for pipeline bubbles.

3.2. Complex ALU Design

The real ALU employed by the FPE architecture requires 6
cycles to compute a butterfly’s multiply-add operation; given
the abundance of butterfly operations in the FFT, accelerating
this operation specifically will have a corresponding acceler-
ating effect on the FFT implementation. Specifically, the SPU
extends the ALU architecture to employ four DSP48E slices,
as shown in Fig. 2 to enable a single-cycle complex-valued
multiply-add operation via two half operations:

2757

1. Real: single-cycle C,. £+ (4; x B;) + (A, x B;)
2. Imaginary: single-cycle C; + (A; x Br) &+ (A, x B;)

DSP48E

Cr + (Ai * Bi) + (Ar * Br)

Extract
<P,

;
[shin —

Real Datapath

Ci % (Ai * Br) £ (Ar * Bj)

Extract
< Pi

Shift pic<t

Image Datapath

Fig. 2. Complex ALU in SPU

This change has been made within the framework of the
existing FPE instruction set and so is transparent from the pro-
grammer’s perspective. There is an extra shift-right-by-one
output which enables the scaling operation merged with the
computation. This complex ALU enables 472 MMAC/s when
mapped to Virtex-5 and enables a two-cycle radix-2 butterfly.

4. MULTICORE-SSP FFT

4.1. Multicore SSP Architecture

Exploiting the SPU as a basic building block, the overall
structure of the Softcore Streaming Processor (SSP) is shown
in Fig. 3. This architecture exploits both Task-Level Paral-
lelism (TLP) by varying the number of SPUs, and Data-Level
Parallelism (DLP) within the SPU by varying the number
of SIMD ways. Communication between SPUs in SSP uses
flexible point-to-point FIFOs to provide maximum through-
put with single-cycle latency and avoiding the need for data
shuffling within the SPU.

SPU SPU

g::t"rfzﬁ:r =4 Point-to-Point FIFO Connection D

EE-E BE-E .. EE-B
SPU

SPU SPU

Fig. 3. SSP Architecture

The SSP is used as the basic computation unit of a mut-
licore FFT implementation. To demonstrate, we propose two

mapping approaches, one of which results in a MIMD imple-
mentation and the other a SIMD implementation of an 8-point
FFT is used for illustration. The MIMD implementation is de-
rived as shown in Fig. 4(a) by mapping butterfly operators to
a multicore MIMD.

stage1 stage2 stage3
R - -

:g: bf) SPUO PEO bt bf :;g
@)y = O i
AT C) il G O
o () it) el) e

(a) MIMD Partition

stage1 stage2 stage3
- - -

XOM7 g bf be] | O

{4} — A b o - X{4}
PEO >< PEO PEO

2}] L L N X1}

oL _(/bt\ T AT T s

ctani Q) mngnn C) mil@n: €)ine
PE1 >< PE1 PE1

X(3) — f—(/,\ff = X3}

iy L bf bf ot 1T %

SPUO SPU1 SPU2

(b) Multi-SIMD Partition

Fig. 4. FFT Graph Partition

The SIMD mapping is shown in Fig. 4(b) and employs
pipelined processing, partitioning the graph vertically stage
by stage such that each SIMD stage is implemented on an
SPU. In order to enable the multi-SIMD processing, the ro-
tation factors of butterfly are made private to the SPU PEs to
be stored in their DM. The butterflies inside a computation
stage are mapped to SPU PEs. Compared to MIMD partition,
the multi-SIMD partition computes tasks in a pipelined way,
resulting in higher latency, further, cutting the FFT graph ver-
tically involves more communication cost (see edges cut by
partitions). However, multi-SIMD partition can save consid-
erable resource cost by enabling SIMD processing and simple
inter-SPU communications.

4.2. Communications Architecture

The MIMD mapping illustrated in Fig. 4(a) resolves the
abstract channels represented by edges between nodes in
dataflow graph into physical FIFOs. The default allocation
scheme simply allocates all edges of nodes between any two
SPU PEs into a physical FIFO. As a result, there is at most
one FIFO between any two SPU PEs. In the 4-SPU imple-
mentation illustrated in Fig. 4(a), each SPU communicates
with the other 2 SPUs requiring 8 FIFOs. However, no two of

2758

LUT Table 2. Area and Performance Results for FFT
S
Config, (x10?) BRAMs DSP48Es (MHz) (MSample/s) (115) Speedup T/LUT T/DSP48E
4xV1 18.8 4 16 319 109.5 2.3 1.8 5.8 6.6
E 8xV1 31.1 8 32 316 224.7 1.1 3.6 7.2 6.8
?"_. 16xV1 61.9 16 64 321 428.0 0.6 6.9 6.9 6.4
-g 8xV1 21.2 9 32 355 142.2 3.2 2.3 6.7 4.3
g‘ 8xV2 36.9 8 64 335 297.8 1.8 4.8 8.1 4.5
hg 8xV4 61.4 10 128 310 551.1 1.8 8.9 9.0 4.1
Xilinx Radix -2 6.2 3 6 404 61.9 4.1 1.0 10.0 10.0
o 8xV1 274 49 32 305 1185 8.6 2.0 6.7 6.1
E 16xV1 75.0 25 64 306 303.6 3.4 52 6.3 7.9
< 32xV1 136.1 32 128 310 620.0 1.7 10.7 7.0 8.0
'g 10xV2 75.1 21 80 342 342.0 6.2 5.9 7.0 3.8
<+ 10xV4 136.7 15 160 325 650.0 34 11.2 7.4 3.6
g 10xV8 175.5 10 320 311 1105.7 2.0 19.0 9.3 3.3
Xilinx Radix-2 | 9.0 3 6 417 58.0 177 1.0 10.0 10.0

these FIFOs are used at once; hence by analysis of the read-
write access patterns, these can be shared as illustrated in Fig.
5(a), reducing the number of FIFOs to 4. By sharing, the
number of required inter-SPU FIFOs for a K-SPU partition
is reduced from K * log, K to only K.

/o)

)
& Q= B0
O o

(a) Shared FIFO Allocation

)
]2]]3] ‘°

(b) Conflict-free FIFO Allocation

Fig. 5. SSP FIFO Allocation Configurations

Likewise, the default FIFO allocation causes large amounts
of access conflicts, in the early stages of the FFT (when each
SPU PE compute one or more butterfly groups), as the data is
consumed by a sink processor in a different order from that in
which it is produced. This requires data to be buffered in the
processor’s local storage space, resulting in unwanted spills
and reduced duty factor. This conflict can be resolved by al-
locating up to four FIFOs to each SPU PE for the conflicting
stages. The effect of this process is illustrated in Fig. 5(b).

5. IMPLEMENTATION AND RESULTS

To verify the effect of these architectural manipulations on
the performance and cost of the softcore-based FFT imple-
mentation, implementations of 256-point FFT on4 x 1, 8 x 1
and 16 x 1 SPU MIMD allocations and 8 x 1, 8 x 2, 8 x 4
multi-SIMD SPU allocations are reported. This is extended

for 1024 point FFT employing 8 x 1, 16 x 1, and 32 x 1
SPU MIMD partitions and 10 x 2, 10 x 4 and 10 x 8 SPU
allocations.

Table 2 shows the area and performance results of the
SSP implementations on Xilinx Virtex 5 VSX240T along
with a radix-2 Xilinx FFT core for comparison [12]. As this
shows, the performance and efficiency (measured in terms of
throughput per LUT (T/LUT) and throughput per DSP48E
(T/DSP48E)) of these implementations is well in advance of
the original FPE-based implementation and scales well with
the number of SPU PEs increases.

The MIMD FFT implementation exhibits latency less than
50% of the SIMD implementations with similar throughput
but has higher BRAM requirements. Overall the SSP ap-
proach was observed to offer speed-ups of a factor of up to
8.9 (19) times than the radix-2 core for 256-point (1024-point
FFT). In addition, for higher throughput FFT operations the
resource efficiency (normalised to Xilinx Radix-2 FFT core in
Table 2) approaches that of even dedicated circuitry for high
throughput implementations, and never exhibits efficiency
more than 40% lower than the Xilinx component.

In summary, the SSP-based implementation has formed
an effective realisation approach for large scale FFT architec-
tures, enabling high throughput implementations and resource
efficiency comparable to dedicated circuit implementations.

6. CONCLUSION

This paper presented the first recorded implementation of FFT
operations on FPGA-based softcore processor architectures.
By extending the FPE-based processing infrastructure to in-
clude more complex memory, datapath and communications
infrastructures, the resulting implementations enable speed-
ups by factors of up to 19 times whilst presenting resource ef-
ficiency measures which approach those of dedicated circuit
implementations, despite operating a software-programmable
processing paradigm.

2759

7. REFERENCES

[1] X. Chu and J. McAllister, “Software-defined sphere de-
coding for FPGA-based MIMO detection,” IEEE Trans.
on Signal Processing, vol. 60, no. 11, pp. 6017 —6026,
Nov. 2012.

[2] J. Yu, C. Eagleston, C.H. Chou, M. Perreault, and
G. Lemieux, “Vector processing as a soft processor ac-
celerator,” ACM Trans. Reconfigurable Technology and
Systems, vol. 2, no. 2, pp. 12:1-12:34, June 2009.

[3] C. H. Chou, A. Severance, A.D. Brant, Z. Liu, S. Sant,
and G. Lemieux, “VEGAS: Soft vector processor
with scratchpad memory,” in Proceedings of the 19th
ACM/SIGDA international symposium on Field pro-
grammable gate arrays, New York, NY, USA, 2011,
FPGA ’11, pp. 15-24, ACM.

[4] B.M. Baas, “A low-power, high-performance, 1024-
point FFT processor,” IEEE Journal of Solid-State Cir-
cuits, vol. 34, no. 3, pp. 380 -387, Mar 1999.

[5] W.C. Yeh and C.W. Jen, “High-speed and low-power
split-radix FFT,” IEEE Trans. on Signal Processing, vol.
51, no. 3, pp. 864 — 874, Mar 2003.

[6] Y.W. Lin, Y.C. Tsao, and C.Y. Lee, “A 2.4-gsample s
DVES FFT processor for MIMO OFDM communica-
tion systems,” IEEE Journal of Solid-State Circuits, vol.
43, no. 5, pp. 1260-1273, May 2008.

[7]1 C. Cheng and K.K. Parhi, “High-throughput VLSI ar-
chitecture for FFT computation,” IEEE Transs on Cir-
cuits and Systems II: Express Briefs, vol. 54, no. 10, pp.
863 —-867, Oct 2007.

[8] U.J. Kapasi, W.J. Dally, S. Rixner, J.D. Owens, and
B. Khailany, “The Imagine stream processor,” in /IEEE
International Conference on Computer Design: VLSI in
Computers and Processors, 2002, pp. 282-288.

[9] R. Thomas, “An architectural performance study of the
fast fourier transform on vector IRAM,” Tech. Rep., UC
Berkeley, Aug. 2000.

[10] L.S. Uzun, A. Amira, and A. Bouridane, “FPGA imple-
mentations of fast fourier transforms for real-time signal
and image processing,” IEE Proc. Vision, Image, and
Signal Processing, vol. 152, no. 3, pp. 283-296, 2005.

[11] M.A. Kinsy, M. Pellauer, and S. Devadas, “Heracles:
Fully synthesizable parameterized mips-based multi-
core system,” in International Conference on Field Pro-
grammable Logic and Applications (FPL), Sept. 2011,
pp- 356 -362.

[12] Xilinx Inc., “Xilinx LogiCORE IP fast fourier transform
v7.1,” Tech. Rep., 2010.

2760

