
ON-CHIP IMPLEMENTATION OF MEMORY MAPPING ALGORITHM TO SUPPORT

FLEXIBLE DECODER ARCHITECTURE

Saeed-ur-REHMAN, Awais SANI, Philippe COUSSY, Cyrille CHAVET

Lab-STICC, Université de Bretagne-Sud, Lorient

Abstract- Parallel hardware architectures are used to design

turbo-like iterative decoders to meet the requirement of high

data rate applications. However, parallel architectures suffer

from memory conflict problem due to interleaving law used in

turbo-like codes. To solve conflict problem, different memory

mapping approaches have been developed. These methods

automatically generate a set of control words stored in ROM

to drive the architecture. These approaches are used off-chip

by the designer (i.e. prior the decoder implementation) to

generate different set of control words i.e. one set for each

block length used in the target telecommunication standard.

This requires multiple ROMs to store mapping information

for multiple block lengths and results in huge hardware cost.

In this article, we propose to embed memory mapping

algorithms on-chip. Hence, each time word-length changes,

memory mapping algorithm is executed. Command words are

thus generated at runtime and stored in a RAM. This is a first

attempt to embed mapping algorithms on chip and

experimental results show that a significant amount of

memory can be saved by using on-chip execution of mapping

algorithms. Results also highlight that improvement in design

and implementation of mapping algorithms are still needed to

embed mapping algorithms on-chip to implement flexible

decoder architectures.

1. INTRODUCTION

He development of broadband devices such as smart-

phones or notebooks requires wireless

telecommunications standards that support high data rate

applications. To cope with this high data throughput

requirement, current telecommunication standards use OFDM,

MIMO and advance error correction techniques to reliably

transfer data on different wireless networks. Moreover, each

standard includes different block lengths in order to support

different applications running on these broadband devices.

 Turbo-like codes [1] [2] are used in current

telecommunication standards [15]-[17] for channel coding,

equalization, demodulation and synchronization due to their

excellent error correction properties. However, iterative

algorithms that are used to decode these codes result in huge

latency. Parallel decoder architectures are thus employed at

receiver to speed up the decoding and to support application

timing requirements. In parallel architectures, several

processing elements PEs (decoders) are concurrently used to

decode the received information. To increase memory

bandwidth, several memory banks BKs are connected with

these PEs through interconnection network. The function of

the network is to exchange the data between PEs and BKs

according to predefined interleaving or permutation law.

Interleaving laws are parameterized by block lengths. Typical

parallel decoder architecture is shown in Figure 1.

RAM0

RAM1

RAM2

Interconnection N
etw

ork

PEn-1
RAMb-1

Network Control Logic

Controller

R/W

PE2

PE1

PE0 A
ddress G

eneration Logic

Figure 1 : Parallel decoder architecture

Unfortunately, parallel decoder architectures suffer from

memory access conflict problem which results in increased latency

and hardware cost. To manage this problem, different conflict free

interleaving laws are used in current telecommunications

standards. For example, 3GPP-LTE [15] uses Quadratic

Permutation Polynomial (QPP) [4] interleaver whereas WiMAX

[17] uses ARP [3] interleaver to permute the data. These

interleavers often simplify the parallel decoder architecture Indeed,

these interleavers are conflict free for particular types or degrees of

parallelism used in turbo decoding. For example, QPP interlever is

conflict free for SISO Decoder level and Radix-4 level Parallelism

whereas ARP supports only SISO Decoder level Parallelism.

Hence, to fulfill high throughput requirement of current and future

standards, decoding architecture must support all types of

parallelisms that can be employed in turbo decoding. Currently two

classes of approaches exist to tackle memory conflict problem

when designing parallel decoder architectures:

• Run time approaches use extra memory elements and control

logic in the communication network in order to remove

conflicts [5][6][7][8][9].

• Design time approaches find a memory mapping to provide

conflict free concurrent access to all the memory banks

[11][12][13]

In first family of approaches, collision problem is tackled either

through the addition of extra memory elements and/or complex

interconnection network. In [5][6][7], dedicated interconnection

network called LLR distributor is designed to tackle conflict

problem for turbo codes. Different structures such as Tree

Interleaver Bottleneck Breaker (TIBB), Ring Interleaver

Bottleneck Breaker (RIBB) and General Interleaver Bottleneck

Breaker (GIBB) are proposed to handle conflict and to connect

LLR distributor to PEs and BKs. To increase the scalability and to

meet higher throughput requirement on flexible communication

network, two heterogeneous multistage networks, butterfly and

Benes, are investigated in [8]. These networks exhibit huge

scalability and very simple packet routing algorithms but requires

pre-computation of routing paths and packet scheduling which is

not a feasible solution for implementing different standards on the

flexible decoder architecture. In [9], Binary de Bruijn

interconnection network is presented to provide scalability and

allow any permutation to be routed efficiently. Due to its path

diversity, communication conflicts are managed by deflecting the

conflicting packets appropriately until they reach the target

processor rather than blocking or buffering them. However, all

these flexible networks used in run time approaches suffer from

large silicon area and cost due to increased buffer control

architecture necessary to manage conflicting packets. Also, delay

introduced due to conflict management mechanisms degrades the

maximum throughput and makes these approaches inefficient for

high data rate and low power architectures.

In second kind of approach, different algorithms are proposed to

provide conflict free concurrent accesses to all processing

elements. For that, pre-processing is realized to determine the

memory locations for each data element used in the computation.

The most common approach is to prepare conflict graph in which a

node represents a data and two nodes are connected if and only if

the associated data are accessed at the same time. Node coloring

approach can then be used to solve the mapping problem: each

color corresponds to one memory bank. However, node coloring is

NP-complete problem as shown in [10]. In [11][12], the authors

proposed a heuristics to find conflict free memory mapping in

turbo decoder. Contrary to the literature belief, the authors have

proven that for every code, conflict free memory mapping always

T

2751978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

exists to tackle collision problem. However, the proposed

approach is based on a simulated-annealing algorithm, so the

user cannot predict when the algorithm will end. In [13],

another heuristic is proposed which finds conflict free

memory mapping while optimizing the storage element and

interconnection network. However, all these heuristics fail to

remove the computational complexity of the problem. The

benefit of these approaches is that decoder implementation

does not need any specific network and extra memory

elements to support particular interleaving law. Rather any

network which supports all the permutation patterns between

inputs and outputs can be used to implement any interleaving

law. However, the approach requires preprocessing to map

data in different memory banks for different block lengths and

parallelism degree.

In this article, to the best of our knowledge, we have

presented the first attempt to embed memory mapping

algorithms on-chip in order to execute them at runtime to

solve conflict problem. The purpose of this article is to show

that both runtime and design time approaches could be

merged in the future to design flexible decoder.

The rest of the paper is organized as follows. Section 2

explains how memory mapping approaches are used to solve

memory conflict problem and what are the inconveniencies in

executing design time approaches offchip. Section 3 describes

the architecture that is used in this article to execute memory

mapping algorithms. Section 4 uses different embedded

processors to measure the computational complexity of

different memory mapping approaches. Finally, in section 5,

we conclude our paper.

2. MEMORY MAPPING APPROACHES

As explained in previous section, memory mapping

approaches are used to solve memory access conflict problem

when designing parallel decoder architectures. However,

before presenting detailed mechanism of how these

approaches work, we briefly explains memory conflict

problem. The problem can best be explained through simple

example of turbo codes. In this example, natural and

interleaved orders are:

Natural order = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Interleaved order = 0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11

For parallel processing, this codeword is divided into four

windows in both natural and interleaved order and arranged in

data access matrices of Figure 2. In this figure, each row (or

window) is processed by one processing elements whereas

data in each column (or time instance) are need to be accessed

concurrently in parallel.

Natural order Matrix

PE1 0 1 2 3

PE2 4 5 6 7

PE3 8 9 10 11

t1 t2 t3 t4

Interleaved order Matrix

PE1 0 3 6 9

PE2 1 4 7 10

PE3 2 5 8 11

t5 t6 t7 t8

P
A

R
A

L
L
E

L
IS

M

Figure 2: Data Access Matrices

To increase memory bandwidth, three memory banks are

used so that each processing element can concurrently get data

elements in parallel. Data elements are stored in banks in such

a manner that at each time instant in natural order, all the

processing elements always access different memory banks as

shown in Figure 3.a. However, using this memory mapping,

all processing elements always access the same memory bank

at each time instance in interleaved order as shown in Figure

3.b. This results in memory conflict problem and increases

latency (by three in this example) in data fetching from

memory due to the presence of conflict management

mechanism in communication network. Furthermore, this problem

reduces system throughput and increases system cost.

PE 2

PE 1

4, 5,

6, 7

0, 1,

2, 3

PE 3
8, 9,

10, 11

Mem 2

Mem 1

Mem 3

PE 2

PE 1

4, 5,

6, 7

0, 1,

2, 3

PE 3
8, 9,

10, 11

Mem 2

Mem 1

Mem 3

Conflict

Problem

(a) Conflict free natural order

Access

(b) Conflict full interleaved order

Access

Figure 3: Memory Conflict Problem in Parallel Turbo Decoder

To solve this memory conflict problem, mapping approaches

uses different heuristics to find conflict free memory mapping in

which all the PEs always access the different memory banks at

each time instance. These heuristics first transform natural and

interleaved orders in matrix format as shown in Figure 2.

Afterwards, heuristics use additional matrices in which they store

current mapping information. This mapping information is

modified after each iteration of the mapping algorithm until

conflict free memory mapping is obtained. To explain execution

flow of mapping approaches, we use a simple approach in which

two additional matrices called Mapping Matrices are used to store

mapping information. These matrices (MAPNat, MAPInt) have the

same order as the natural or interleaved order matrices as shown in

Figure 4. To find conflict free memory mapping, each column of

the mapping matrices should contain different memory banks and

each data must be mapped in one and only one memory bank.

Natural order Matrix

0 1 2 3

4 5 6 7

8 9 10 11

t1 t2 t3 t4

Interleaved order Matrix

0 3 6 9

1 4 7 10

2 5 8 11

t5 t6 t7 t8

MAPNat

- - - -

- - - -

- - - -

MAPInt

- - - -

- - - -

- - - -

Figure 4: Matrices used in SAGE

Algorithm initializes by assigning memory banks to the first

column of MAPNat. Next, algorithm updates the entries

corresponding to the data in MAPInt with this mapping information.

After that, at each iteration, the algorithms select the most

constraint column (column which has minimum number of filled

entries), fills that column with mapping information respecting the

constraints and update that mapping information into other matrix

until all the columns of the mapping matrices are filled with

mapping information. If memory banks are represented by A, B, C

then mapping matrices at the end of the algorithm is shown in

Figure 5.

MAPNat

A B C A

B C A B

C A B C

MAPInt

A A A A

B B B B

C C C C

Figure 5: Final Mapping Matrices

The resultant memory mapping is,

Bank A= {0, 3, 6, 9} Bank B= {1, 4, 7, 10} Bank C= {2, 5, 8, 11}

Based on this mapping, addressing and network control logic are

generated. Currently, memory mapping algorithms are using

memory to store addressing and control logic. So, if we change the

interleaving law then new interleaved order is obtained and using

memory mapping approaches, we get a new mapping that is

different from the previous one. For example, new interleaved

order and memory mapping are:

Interleaved order = 2, 7, 10, 8, 9, 6, 1, 5, 11, 3, 4, 0

Bank A= {0, 1, 2, 3} Bank B= {4, 5, 6, 11} Bank C= {7, 8, 9, 10}

2752

So, the real disadvantage of these approaches is the

requirement of multiple memory elements to support different

block lengths within a standard or multiple standards as

shown in Figure 6. This results in huge hardware cost that is

utilized in storing addressing and control logic to design

flexible decoder architecture. In order to reduce hardware

cost, either we optimize memory required to store addressing

and control logic or run these algorithms on chip. Current,

memory mapping approaches are unable to optimize memory

necessary to store control information. So, the only solution is

to run mapping approaches on chip in order to calculate new

mapping information as soon as new block length needs to be

decoded and updates new addressing and control information

in memory. However, computational complexity of current

memory mapping approaches makes them difficult to be

embedded on chip. In this article, we explore the possibility of

executing these algorithms on FPGA using different

embedded processors to show the advantages and

disadvantages of embedding mapping approaches on chip.

RAM0

RAM1

RAM2

Interconnection N
etw

ork

PEn-1
RAMb-1

Controller

R/W

PE2

PE1

PE0 A
ddress G

eneration Logic

Network Control Logic

Figure 6 : Parallel decoder architecture supporting multiple

block lengths

3. PROPOSED ARCHITECTURE

We proposed a dedicated hardware architecture (see Figure 7)

to allow for embedding memory mapping algorithms on chip.

Control unit includes a dedicated processing element (General

Purpose Processor GPP, Application Specific Instruction set

Processor ASIP or Application Specific Integrated Circuit

ASIC) to execute the mapping algorithm. Multiple network

and addressing ROMs (as shown in Figure 6) are replaced by

a two RAM i.e. Network RAM and addressing RAM. Control

Unit executes mapping algorithm and updates these RAMs

each time block length changes.

RAM0

RAM1

RAM2

Interconnection N
etw

ork

PEn-1
RAMb-1

Network RAM R/W

PE2

PE1

PE0

Addressing RAM

Control Unit

Architecture to execute

memory mapping Approache

Figure 7 : Parallel decoder architecture to embed memory

mapping algorithms on chip

Sizes of Network and addressing RAMs depend on

maximum block length and on the parallelism supported by

decoding architecture. To determine size of different

components of the architecture to support complete

telecommunication standard, following parameters are considered:

N = Total Number of processing elements

B = Maximum number of memory banks

T = Maximum number of access to the memory

R = Maximum number of data in each bank

For example, if we consider four processing elements (N = 4)

implemented by using forward backward, butterfly, radix-4 and

butterfly with radix-4 parallelisms (B = 16). However, memory

mapping approaches would be able to solve mapping problem for

any type of parallelism used in turbo decoding. Size of addressing

RAM = B * T * 2
log ()R   where size of each word is B* 2

log ()R  

bits. Similarly, if the network is Benes then the size of network

RAM = T * (N/2*((2*log2N)-1)). Also the size of bus from

network RAM to network is N/2*((2*log2N)-1) bits and the size

of each bus from addressing RAM to bank is B* 2
log ()R   bits.

Memory mapping architecture starts by receiving information

about the block length decoder wants to decode. The architecture

first calculates interleaved order related to this block length. Based

on this information, memory mapping algorithm is executed to

calculate conflict free memory mapping and updates each

addressing and control memory to start decoding new block.

4. EXPERIMENTS

In this section, different experiments have been performed using

different embedded processors to measure the computational

complexity of memory mapping approaches based on three

aspects: block size, parallelism and processor. Moreover, the

memory required to store command words both in case of on chip

and off chip execution of memory mapping approaches is also

compared in this section. In this regard, two soft processors (micro

blaze and NIOS II) and one hard processor (PowerPC) embedded

in Xilinx and Altera FPGAs are used to execute [11][13]. For

simplicity, we divide these experiments into three sets based on the

embedded processor that executes these algorithms. For each

processor, execution time to compute [11][13] is calculated and

compared in this section. In this article, we implement HSPA

interleaver used in 3GPP-WCDMA [16] on parallel architecture.

This interleaver is not conflict free to support parallel

implementation of turbo decoder and memory mapping approaches

are required to find mapping for wide range of block sizes. The

architecture is designed to support all f the block sizes.

The first processor we considered is Microblaze which is a soft

processor used in Xilinx FPGAs. This embedded processor has

been implemented on Virtex-5 ML507 Evaluation Platform with

Processor clock frequency of 125MHz and System Clock

frequency of 100 MHz. Due to limited resources of FPGA, we use

off-chip memory to execute our mapping algorithms. The second

processor we considered in our experiments is NIOS II. NIOS II is

a soft processor used in Altera FPGAs. NIOS II has been

implemented on Cyclone-III NIOS II Embedded Evolution Kit

with Processor clock frequency of 195MHz and System clock

frequency of 50MHz. Off-chip memory was used to execute

mapping algorithms due to limited on-chip memory of FPGA. The

third processor we considered in our experiments is PowerPC

which is a hard processor embedded in Xilinx Virtex-5 ML507

board. Processor clock frequency of 400MHz and System clock

frequency of 100MHz was used to perform experiments. On-chip

memory was used in this set of experiments to execute mapping

algorithms. To measure the impact of architecture of embedded

processors on execution time, normalized time values are used. For

normalized time, PowerPC execution time is used as a reference

and execution times of Microblaze and NIOS II are normalized

with respect to the PowerPC clock frequencies.

2753

The normalized times to execute [11][13] on Microblaze,

NIOS II and PowerPC for different block lengths and PE = 4

are shown in Figure 8. From this figure, it is clear that

execution time of [11][13] increases with the increase of block

lengths. Moreover, [13] is always able to finds memory

mapping in less time than [11]. From processor prospective,

Microblaze takes the highest time to find memory mapping

whereas NIOS II executes the mapping algorithm in the least

time.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

256 512 768 1024 1280 1536 1792 2048

N
o

r
m

a
li
z
e

d
 T

im
e

 (
s

e
c

o
n

d
s
)

Block Length

Comparison for multiple block lengths using different embedded processor

PowerPc_[11]

Microblaze_[11]

NIOS-II/e_[11]

PowerPc_[13]

Microblaze_[13]

NIOS-II/e_[13]

Figure 8 : Normalized Run time Values of [11] and [13] for

different embedded processors using forward backward

Parallelism

We measured the performance of [11][13] for different

types of parallelism used in turbo decoding. Figure 9 gives the

normalized execution time of different processors for forward

backward, butterfly and butterfly with radix-4 parallelism.

From this comparison, it is clear that execution time increases

almost 7 times while moving from forward backward

parallelism to butterfly with radix-4 parallelism.

0

10

20

30

40

50

60

70

80

90

100

110

4 8 16

N
o

rm
a

li
z
e

d
 T

im
e

 (
S

e
c

o
o

n
d

s
)

Parallelism

Comparison for multiple parallelism using different
embedded processors

PowerPc_[11]

Microblaze_[11]

NIOS-II/e_[11]

PowerPc_[13]

Microblaze_[13]

NIOS-II/e_[13]

Figure 9 : Normalized Run time Values of [11] and [13] for

different types of parallelism using block length 1024

From architecture perspectives, cost of our architecture

always remains constant for different parallelisms supporting

several block lengths for each processor. However, the cost of

ROM memory required to store command words in case of

off-chip execution of mapping approaches is extremely high

to be implemented on practical systems. To implement all the

block sizes used in 3GPP-WCDMA, off-chip approach requires

62Mbits memory to store command words whereas thanks to the

extensive reuse of RAM only 128Kbits of memory is required in

case of on-chip execution of mapping algorithms using forward

backward (N=4) parallelism. Figure 10 shows the comparison

between the memory required to store command words in case of

forward backward (N=4), butterfly (N=8) and butterfly with radix-

4 (N=16) parallelisms. Moreover, by changing the parallelism,

same memory is used to store command words to support this

parallelism in case of on-chip execution of mapping approaches.

However, off-chip approach requires extra memory to store new

set of command words with each type of parallelism. In Figure 10

the comparison of the memory required in decoder architecture is

given.

15

25
35

110 100 90
128 128 128

8192
13312

18432

53233 47732 42231
61425 61044 60663

1

10

100

1000

10000

100000

A
re

a
 in

 K
ilo

 B
it
s
 (

L
o
g
 s

c
a
le

)

Area Comparison (on-chip/off-chip)

Network
Conrtoller

Address
Controller

Total

on-chip off-chip on-chip off-chip on-chip off-chip

N=4 N=8 N=16

Figure 10 : Area Comparison (Log Scale) using on-chip and off-

chip approaches for different types of parallelism

From these experiments, it is clear that significant reduction in

architectural cost can be obtained by executing mapping algorithms

on-chip. Moreover, execution times of these algorithms are

affected by size of block lengths, parallelisms, architecture of

embedded processor and mapping algorithm. This time can thus be

reduced by using ASIP or non programmable hardware accelerator

architecture to execute mapping algorithms. In addition,

improvement in algorithmic development would also significantly

improve the timing performances.

5. CONCLUSION

In this article, we proposed the first attempt to embed memory

mapping approaches on-chip to solve memory conflict problem in

parallel hardware decoders. Dedicated architecture composed of

an embedded processor and RAM memory banks to store

command words has been proposed. Experiments have been done

by using different memory mapping approaches using several

embedded processors to compare the computational and

architectural complexity of executing these approaches on-chip and

off-chip. Experimental results shows that computational

complexity of memory mapping approaches depends on mapping

algorithms, embedded processor architectures, block lengths and

parallelisms. From architectural prospective, cost of the system to

implement mapping algorithms off-chip is 480 times greater than

the cost to implement these algorithm on-chip. This motivates to

implement mapping algorithm on-chip to support multiple

standards on a single chip. However, more efficient algorithms are

required to find conflict free memory mapping on-chip and to

design flexible decoder that supports multiple standards and

parallelisms. Moreover, to improve the computational time and to

reduce area of the architecture that executes mapping algorithms,

ASIP or hardware accelerator need to be used. This will enable to

implement flexible decoder architecture with reduced architectural

and computational complexity.

2754

REFERENCES

[1] C.Berrou, A.Glavieux, and P.Thitimajshima, “Near-Shannon

limit error-correcting coding and decoding: Turbo codes,” in Proc.

IEEE Int. Conf. Commun., vol.2, pp.1064–1070, 1993.

[2] R. G. Gallager, “Low-Density Parity-Check Codes”,

Cambridge, MA: MIT Press, 1963.

[3] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, M. Jezequel,

“Designing good permutations for turbo codes: towards a single

model,” in Proc. of ICC 2004, vol. 1, June 2004, pp. 341-345

[4] O. Y. Takeshita, “On maximum contention-free interleavers and

permutation polynomials over integer rings,” IEEE Trans. Inf. Theory,

vol. 52, no. 3, pp. 1249–1253, Mar. 2006.

[5] M. Thul, N. Wehn, and L. Rao, “Enabling high-speed turbo

decoding through concurrent interleaving,” in Proc. IEEE

International Symposium on Circuits and Systems (ISCAS), vol. 1,

2002, pp. 897–900.

[6] M. I. Thul, F. Gilbert. and N. Wehn. “Optimized Concurrent

Interleaving for High-speed Turbo-Decoding”. In Proc. ICECS 2002,

Dubrovnik, Croatia, Sept. 2002.

[7] M. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving

architectures for high-throughput channel coding,” in Proc. IEEE

International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 2003, pp. 613–616 vol.2.

[8] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly

and Benes-based on-chip communication networks for multiprocessor

turbo decoding,” in Proc. of the conference on Design, Automation

and Test in Europe, pp. 654-659, April 2007.

[9] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de Bruijn

interconnection network for a flexible LDPC/turbo decoder,” in Proc.

IEEE Int. Symp. Circuits Syst., 2008, pp. 97–100.

[10] P. Keyngnaert, B. Demoen, B. De Sutter, B. De Sus,and K. De

Bosschere. “Conflict Graph Based Allocation of Static Objects to

Memory Banks” Informal proceedings of the First workshop on

Semantic, Program Analysis, and Computing Environments, pages

131–142, September 2001.

[11] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping

interleaving laws to parallel turbo and LDPC decoder architectures”,

IEEE Trans.Inf.Theory, vol. 50, no.9, pp.2002-2009, Sep. 2004.

[12] Jing-ling, “Parallel Interleavers Through Optimized Memory

Address Remapping” IEEE Trans. VLSI Systems vol. 18, no.6,

pp.978-987, June. 2010.

[13] C. Chavet, P. Coussy, P. Urard and E. Martin, “Static Address

Generation Easing: a Design Methodology for Parallel Interleaver

Architecture”. In proceeding ICASSP 2010.

[14] J.L. Gross, J.Yellen, “Handbook of Graph Theory”, 353, CRC

Press. 2003.

[15] “Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access; Multiplexing and

Channel Coding (Release 8)”, 3GPP Std. TS 36.212, Dec. 2008.

[16] 3GPP, “Technical specification group radio access

network;multiplexing and channel coding (FDD)” (25.212

V5.9.0).June 2004.

[17] IEEE P802.16e, Part 16. “ Air Interface for Fixed and Mobile

Broadband Wireless Access Systems,” Amendment 2: Physical and

Medium Access Control Layers for Combined Fixed and Mobile

Operation in Licensed Bands, and Corrigendum 1, Feb. 2006.

2755

