
REAL-TIME HARDWARE IMPLEMENTATION OF MULTI-RESOLUTION IMAGE
BLENDING

Vladan Popovic, Kerem Seyid, Alexandre Schmid, Yusuf Leblebici

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Microelectronic Systems Laboratory

Lausanne, Switzerland

ABSTRACT

A novel real-time implementation of a multi-resolution image blend-

ing algorithm is presented in this paper. A multi-resolution decom-

position of the input is used to blend multiple images at different

scales. Processing time is shortened by designing a pipeline system.

The proposed solution requires less hardware multipliers and is able

to achieve very high operating frequencies, compared to the current

designs. The presented hardware architecture is optimized to sup-

port multiple simultaneous video streams, and high frame rates at

High-Definition (HD) resolutions.

Index Terms— Real-time systems, Pipeline processing, Image

fusion, Image decomposition, Field programmable gate arrays

1. INTRODUCTION

The limited angle of view of modern cameras has created the need to

combine two or more images into a single one, in order to increase

the effective angle of view. The creation of panoramas or image

mosaics has been a popular research topic over the past years. The

problems which must be solved relate to the proper image alignment

and seamless image blending.

The purpose of the image alignment is to determine the correct

orientation and position of the original images in the final mosaic.

Various algorithms for aligning the captured images were developed

[1], [2], [3]. Additionally, it is possible to reconstruct a panoramic

mosaic using a video stream of frames [4]. While image alignment

processes the geometry of the image, blending algorithms handle the

pixel intensity in the final mosaic.

A major issue in creating photo-mosaics resides in the fact that

the original images do not have identical brightness levels. This may

be caused by diverging camera orientations in space. Thus, cameras

acquire more light in some of the shots. The problem manifests it-

self by the appearance of a visible seam in regions where the images

overlap. The blending algorithms based on a weighted average be-

tween pixels in every image, e.g. “Cut and paste” algorithm [4],

can reduce or even completely remove the seams. However, the

drawback of a weighted average lies in a high frequency blurring

in the presence of any small image alignment error. A possible solu-

tion to this issue consists of using a multi-resolution blending algo-

rithm [5], [6] where high frequencies are combined in a small spatial

range, thus avoiding blurring.

Blending is usually realized as a post-processing operation on

a Personal Computer (PC). However, real-time blending is often re-

quired in multi-camera systems, e.g. [7], [8]. Real-time operation

The authors gratefully acknowledge the support of XILINX, Inc.,
through the XILINX University Program.

can be a very challenging problem. Hence, a Graphics Processing

Unit (GPU) implementation or a dedicated hardware solution are

often considered. Various existing GPU implementations of multi-

resolution blending algorithms [9], [10] and their performance will

be compared to this work. On the other hand, Field Programmable

Gate Arrays (FPGA) are widespread used platforms, that enable fast

development. Sims and Irvine [11] designed an FPGA system for

blending using gradient pyramids. However, their system targeted

blending greyscale images with VGA resolution. Furthermore, the

system had large memory requirements, because all of the temporary

results in the calculation process had to be stored. Song et al. [12] in-

troduced a resource-efficient three-stage pipeline processing system.

Still, their system only supports dual channel image fusion and is

also constrained to greyscale images with VGA resolution. Finally,

Van Der Wal and Burt [13] designed an Application Specific Inte-

grated Circuit (ASIC) able to decompose an input image into mul-

tiple resolutions. However, multiple processing and memory chips

have to be used in order to blend images.

In this paper, a novel real-time FPGA-based implementation is

presented. The dedicated hardware for the multi-resolution blend-

ing algorithm is implemented using a fully pipelined architecture.

The requirements for storage elements is reduced since only the fi-

nal results are stored into memory. Furthermore, the design is able

to support higher frame rate and higher image resolution than earlier

proposed systems.

The outline of the paper is as follows. An overview of the multi-

resolution image blending is given in Section 2. The formulation of

the problem and proposal of the new implementation are explained

in Section 3. Finally, the experimental results and comparison to the

related work are presented in Section 4.

2. MULTI-BAND BLENDING

Multi-Band Blending (MBB) [3] is based on a multi-resolution de-

composition of the original images and their blending across octave

frequency bands. The images are represented using a Laplacian

Pyramid (LP) [5], as it has perfect and simple reconstruction [14].

Several steps are performed to obtain the desired LP. The image is

first blurred and then downsampled by a factor of 2 to obtain a low-

pass image. The low-pass filter proposed in [14]:

H(z) = G(z) =
1

16
(1 + 4z−1 + 6z−2 + 4z−3 + z

−4) (1)

has a very high precision, since it uses only integer coefficients.

Furthermore, this filter can be implemented in hardware using only

adders and shifters, which is further detailed in Section 3.

The low-pass image is then upsampled by 2 and reconstructed

using an interpolation filter. The interpolation filter, in this case, is

2741978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

G (z)2 2 Buffer

Buffer +
+

-

c

d

H (z)
x

Fig. 1. Two-level LP decomposition

identical to (1). The interpolated image is subtracted from the orig-

inal to determine a high-frequency version of the input image. The

LP is created by repeating the same procedure on the downsampled

low-frequency image.

The regions of overlap between images may be of an arbitrary

shape. Thus, a mask should be created, defining the pixels which

should be taken from the original image and their respective weight.

A binary mask is assigned to each image, where 1 represents a pixel

that should be taken from the selected image. This mask is fur-

ther decomposed into a Gaussian Pyramid (GP), which is created

by repetitive blur and downsample operations, i.e. each level of

the pyramid is a low-pass version of the previous level. Brown [5]

and Burt [3] suggest to use the same filter for the generation of the

GP weight mask as for the LP. The use of the same filter simplifies

the system and provides seamless blending results when the overall

brightness level of the images does not differ significantly.

Each frequency band of the LP is combined with the respective

frequency band of the other LPs, i.e. other images. A weighted aver-

age is applied within the overlapped areas, which are proportional in

size to the wavelengths represented in the band. Hence, when coarse

features occur in the overlapping region, they are gradually blended

over a relatively large distance, without blurring or degrading finer

image details in the neighborhood [5]. The weights are taken from

the corresponding mask GP. In case of blending two images, A and

B, the blending of one pyramid level is expressed as:

I(x, y) = IA(x, y)w(x, y) + IB(x, y)(1− w(x, y)) (2)

where IA and IB are pixel intensities and w is the pixel weight.

3. FPGA IMPLEMENTATION

3.1. Laplacian Pyramid Decomposition

In this paper, we propose an FPGA design of the multi-resolution

image blending based on LP decomposition. A fully pipelined archi-

tecture is utilized. Figure 1 shows the data flow diagram of two-level

LP decomposition. The obtained results are coarse (c) and detail (d)

images. Filters from (1) can be expressed in the spatial domain by

the matrix:

H = G =
1

256











1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1











(3)

Direct two-dimensional filtering is implemented, since it re-

quires fewer buffers for storage of temporary results than separable

filtering. Even though a 5 × 5 pixel window is needed for filtering

with G(z), at least two rows (columns) are filled with zeros after the

upsampling operation. Hence, the buffer following the upsampler in

Reg

Reg

Reg

Reg

Reg

Reg+
+

+

+

+

< < 2

< < 1

p1

p5

p2

p4

p3

p3

< < 1

r1/r5

(a) First and fifth row of the filter window

Reg

Reg

Reg

Reg

Reg

Reg+
+

+

+

+

< < 4

< < 3

p1

p5

p2

p4

p3

p3

< < 1

r2/r4

< < 2

(b) Second and fourth row of the filter window

Reg

Reg

Reg

Reg

Reg

Reg+
+

+

+

+

p1

p5

p2

p4

p3

p3

< < 1

r3

Reg

Reg

Reg

+
+

+

< < 2

< < 1

< < 4

< < 3

< < 2

< < 3

(c) Third row of the filter window

Fig. 2. Low-pass filter implementation

Figure 1 only stores two rows (columns). The interpolation filtering

starts when the third non-zero row (column) pixels are arriving from

the pipeline. The buffer in the lower branch in Figure 1 has the same

depth as the buffer located in the upper branch, and acts as a delay

element which synchronizes the original image with the interpolated

pixels. The full decomposition into an LP is realized by cascading

the proposed implementation. The number of the cascaded blocks

corresponds to the desired number of LP levels of decomposition.

The acquired images are temporarily stored into a Random Ac-

cess Memory (RAM). The LP decomposition and filter implementa-

tion depend on the order of the pixels which are read from the RAM.

The first five pixels of each row are read consecutively, i.e. five pixels

are read from the first row, followed by five pixels from the second

row, etc. Subsequently, the filter window is shifted by two columns

to the right. By reading from the memory in this manner, both low-

pass filters H(z) and G(z) in Figure 1 provide outputs column-by-

2742

b

b

b

Image 1 LP

b

b

b

Mask 1 GP

b

b

b

b

b

b

b

b

b

Image N LP Mask N GP

b b b

b b b

b b b

Blended LP

×

×

×

×

×

×

+ +

+ +

+ +

=

=

=

Fig. 3. Illustration of MBB

column, pixelwise. The analogous implementation is also possible,

where reading is done column-by-column, and the output pixels are

provided row-by-row. However, most of the standard image reso-

lutions have higher horizontal than vertical resolution. Hence, the

first option is chosen, because the buffers in Figure 1 can be signif-

icantly smaller when storing two columns, instead of two rows. To

cancel the edge effect at the image boundaries, the edge extension is

performed by reflecting two rows (columns) across the edges.

Figure 2 shows the implementation of the filter block. It can

be observed from (3) that pixels in the first and the fifth row of the

window are multiplied with the same coefficients. Hence, the same

hardware architecture can be used in both cases. The similar situa-

tion occurs with the second and the fourth row, with different coef-

ficients. In Figure 2, signals p1 - p5 denote the intensities of pixels

in the columns 1-5. Output signals r1 - r5 denote the values of the

filtered rows. To obtain a final filtered value of the pixel, r1 - r5 are

summed.

An important benefit of this implementation lies in the absence

of any hardware multipliers. Multiplications by 2, 4 and 8 are real-

ized by binary shifts to the left by 1, 2 and 3 bits, respectively. The

only multiplicand which is not a power of 2 is 3 and it is obtained by

adding the operand to its double, i.e. shift by 1.

The operating frequency of the system is increased by placing

pipeline registers following each addition. The registers are, how-

ever, not needed after shift operations, since logical shifts do not

require any processing time. The advantages of this pipeline archi-

tecture in terms of system performance is shown in Section 4.

3.2. Blending

In addition to LP decomposition, MBB requires a weight mask for

each LP level of the image, as explained in Section 2. Weight mask

GPs are pre-calculated and stored in a RAM, since their size is much

smaller than the size of the original image. The first level of the

pyramid is filled with only 1 and 0. Hence, if the image resolution is

K×M , the lowest level of the GP occupies K×M bits in the RAM.

The weights in the second level of GP can be represented with 4 bits.

Since the resolution of the second level is K×M

4
pixels, the total bit

size is the same as the first level. This rationale can be applied to all

following levels. Hence, the total size that the GP occupies in RAM

is K ×M × L bits, where L is number of levels in the pyramid.

Figure 3 illustrates the process of MBB. N images are si-

multaneously decomposed into their respective LPs in N parallel

branches. The process of decomposition is synchronized in a man-

ner to avoid storing the LPs in the RAM. Weights are read from the

memory and multiplied by the corresponding coefficient in the LP.

The weighted coefficients from each image, i.e. parallel branch, are

summed to form a blended LP. The computation of the blended LP

is also realized in a pipeline, with registers following each multiplier

and adder.

Different LP levels cannot be simultaneously blended. The high-

G (z)2

+
+

+

c

d x̂

Fig. 4. Two-level LP reconstruction

est level, i.e. the one smallest in size, is blended later, since the LP

level is obtained last. Hence, the blended LP levels are not obtained

at the same time and they have to be stored in the RAM. These are

the only intermediate results that have to be stored.

3.3. Laplacian Pyramid Reconstruction

Reconstructing the resulting LP is realized as shown in Figure 4.

The LP coefficients are read from the RAM, starting from the high-

est level, i.e. low-pass image. The coefficients are read in the same

manner as presented earlier, i.e. row-by-row. The same reconstruc-

tion filter G(z) from (3) is used. The coarse image (c) is upsampled

and interpolated to increase the image resolution. Afterwards, the

detail image (d) is added. The resulting image (x̂) is used as a coarse

image input to the next level of reconstruction.

4. EXPERIMENTAL RESULTS

The hardware design is implemented on a Virtex-7 FPGA develop-

ment board VC707, with 1 GB of external 800 MHz Dual Data Rate

type 3 (DDR3) RAM. The maximum synthesizable operating clock

frequency in the design is 420 MHz. The tightest constraint on the

clock frequency is imposed by the adders in Figure 2. It is important

to note that the proposed design is driven by only one clock signal.

In [11] and [12], each pyramid level is driven by a different clock;

each higher level in the pyramid is decomposed using a four times

slower clock signal. Having only one clock domain is especially

important if the design is to be fabricated as an ASIC, where clock

routing becomes complicated in case of multiple clock trees.

The implemented design supports a dual video stream, but it

can be extended to support more cameras, if it is needed. The data

from the camera is recorder in RGB format, with 8 bits depth per

color channel. An LP decomposition is done for each color channel,

and they are operating in parallel. Each frame is decomposed into

4 LP levels, which is the maximum possible number for the chosen

resolution. The display video resolution is 1920 × 1080 (HD 1080).

Table 1 shows the FPGA resource utilization summary and com-

parison to related work. In this work, the external RAM is only used

Table 1. FPGA resource usage comparison

This work [11] [12]

Resource Used

Slices 7467 13287 2641

BlockRAM 14 430 38

DSP 4 – –

External RAM [MB] 8.26 1.22 1.20

Family Virtex-7 Virtex-2 Virtex-4

2743

(a) (b)

Fig. 5. (a) Prealigned captured images and their masks; (b) photo-mosaic of EPFL campus created using the proposed MBB implementation

Table 2. Timing performance comparison

This work [11] [12] [13]

Max. freq. [MHz] 420 31 – 20

Frame rate [fps] 94 101 25 55

Resolution HD 1080 VGA VGA 512×512

Pyramid levels 4 4 3 10

Pixel depth [bits] 24 8 8 8

for storing mask GPs and the resulting LP. Larger external RAM oc-

cupancy is only due to the increased image resolution and color im-

ages. A reduction in BlockRAMs for temporary data storage and in

used FPGA slices is observed. The design uses more slices than [12]

because of the difference in filtering implementations, and one more

LP decomposition level. In this work, filtering is realized using only

adders made of Look-Up Tables (LUT) and registers, instead of mul-

tipliers in DSP blocks. The data from related work is taken from the

original publications. Unknown information is represented by the

“–” sign in all tables.

Table 2 shows the timing performance of blending two video

streams. The maximum operating frequency is much higher than

observed in the previous implementations. Apart from the newer

FPGA family, the speed improvement is further influenced by a fully

pipelined computation architecture. The achieved frame rate of 94

fps is very close to the best performance of the related systems [11].

However, the proposed design achieves this frame rate for signifi-

cantly higher display resolution.

A comparison with GPU implementations is given in Table 3.

The FPGA implementation is superior to the GPU. The GPU solu-

tions are not able to achieve frame rates higher than 2 fps for display

Table 3. FPGA vs. GPU performance comparison

This work [9] [10]

GPU – GeForce 8 Quadro 4600

Frame rate [fps] 94 0.43 1.79

Resolution HD 1080 1147×608 1024×1024

Pyramid levels 4 – 7

Pixel depth [bits] 24 24 24

resolutions of more than 1 MP. Furthermore, the proposed architec-

ture has a constant processing speed independent of the amount of

overlap between the images. This is an important advantage com-

pared to the possible software implementations.

Figure 5 illustrates result of the proposed design. The images in

Figure 5(a) are taken using two Aptina MT9P031 5MP sensors. The

images are prealigned on a PC and stored into memory of VC707

Xilinx development board. The first level of the GP is also shown in

Figure 5(a). The resulting blended image is shown in Figure 5(b).

5. CONCLUSION

In this paper, we propose a fast multiple-image blending hard-

ware implementation. The blending algorithm is based on a multi-

resolution decomposition into an LP and image blending in different

frequency bands. The proposed pipeline implementation is faster

and less resource-demanding than the previous solutions. The ex-

perimental results show that the proposed implementation achieves

higher or the same frame rates as the previously designed systems,

but at a much higher, HD resolution. Furthermore, superiority of the

design over GPU solutions, under similar benchmark tests, is shown

in the comparison.

6. REFERENCES

[1] R. Szeliski and H-Y. Shum, “Creating Full View Panoramic

Image Mosaics and Environment Maps,” in Proceedings of the

Conference on Computer Graphics and Interactive Techniques,

New York, NY, USA, 1997, SIGGRAPH ’97, pp. 251–258,

ACM.

[2] S. E. Chen, “Quicktime VR: An Image-based Approach to Vir-

tual Environment Navigation,” in Proceedings of the Confer-

ence on Computer Graphics and Interactive Techniques, New

York, NY, USA, 1995, SIGGRAPH ’95, pp. 29–38, ACM.

[3] M. Brown and D. Lowe, “Automatic Panoramic Image Stitch-

ing Using Invariant Features,” International Journal of Com-

puter Vision, vol. 74, no. 1, pp. 59–73, August 2007.

[4] S. Peleg and J. Herman, “Panoramic Mosaics by Manifold Pro-

jection,” in IEEE Conference on Computer Vision and Pattern

Recognition, San Juan, Puerto Rico, June 1997, pp. 338 –343.

[5] P. Burt and E. Adelson, “A Multiresolution Spline with Appli-

cation to Image Mosaics,” ACM Trans. Graph., vol. 2, no. 4,

pp. 217–236, Oct. 1983.

[6] M-S. Su, W-L. Hwang, and K-Y. Cheng, “Variational Calculus

Approach to Multiresolution Image Mosaic,” in Proceedings

2744

of International Conference on Image Processing, Oct. 2001,

vol. 2, pp. 245 –248.

[7] B. Wilburn, N. Joshi, V. Vaish, E-V. Talvala, E. Antunez,

A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High Per-

formance Imaging Using Large Camera Arrays,” ACM Trans.

Graph., vol. 24, pp. 765–776, July 2005.

[8] H. Afshari, A. Akin, V. Popovic, A. Schmid, and Y. Leblebici,

“Real-Time FPGA Implementation of Linear Blending Vision

Reconstruction Algorithm Using a Spherical Light Field Cam-

era,” in IEEE Workshop on Signal Processing Systems, 2012.

[9] B. Daga, A. Bhute, and A. Ghatol, “Implementation of Par-

allel Image Processing Using NVIDIA GPU Framework,” in

Proceedings of International Conference on Advances in Com-

puting, Communication and Control, Mumbai, India, January

2011, pp. 457–464.

[10] P. P. Shete, P. P. K. Venkat, and S. K. Bose, “Pyramidal Image

Blending Using CUDA Framework,” International Journal of

Engineering Science and Technology, vol. 3, no. 12, pp. 8502–

8513, December 2011.

[11] O. Sims and J. Irvine, “An FPGA Implementation of Pattern-

Selective Pyramidal Image Fusion,” in International Confer-

ence on Field Programmable Logic and Applications, August

2006, pp. 1–4.

[12] Y. Song, K. Gao, G. Ni, and R. Lu, “Implementation of

real-time Laplacian pyramid image fusion processing based on

FPGA,” Proceedings of SPIE, vol. 6833, 2007.

[13] G. S. Van Der Wal and P. J. Burt, “A VLSI Pyramid Chip

for Multiresolution Image Analysis,” International Journal of

Computer Vision, vol. 8, no. 3, pp. 177–189, Sept. 1992.

[14] R. Szeliski, Computer Vision: Algorithms and Applications,

Springer, New York, NY, USA, 2011.

2745

