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ABSTRACT

In many detection applications with battery powered or
energy-harvesting sensors, energy constraints preclude the
use of the optimal detector all the time. Optimal energy-
performance trade-off is therefore needed in such situations.
In many applications, the signal and noise power may vary
greatly over time, and this can be exploited to constrain en-
ergy consumption while maintaining the best possible perfor-
mance. A detector scheduling algorithm based on the signal
and noise power information is developed in this work. The
resulting algorithm is simple due to its threshold-test struc-
ture and can be easily implemented with almost no overhead.
A detection system with two detectors using the proposed
scheduling scheme is estimated to greatly reduce the energy
consumption for a wildlife monitoring application.

Index Terms— Detection, low-power system, time-
varying, scheduling, wildlife monitoring

1. INTRODUCTION

In many detection applications, energy is often an impor-
tant constraint for system designers. For example, a remote
wildlife monitor is usually required to operate solely on
battery power for months before it can be recharged. As
a result, the optimal but often sophisticated detector might
not be feasible, and a trade-off must be made in order to
maintain decent performance over the deployment lifetime.
In many applications, the signal and noise power may vary
greatly over time. For the wildlife monitoring application,
signal and noise power varies as the animal of interest moves
around or as other environmental noises come and go. This
time-variation in the signal and noise power can be exploited
to greatly reduce the energy consumption with little loss in
performance using the new approach presented here.

The interest in reducing the complexity of detector’s
structure, and hence energy consumption, can be traced back
to [1–3]. The common theme in the previous approaches is
the generic optimization that do not take into account existing

The authors would like to thank the support of the Multiscale Systems
Center, one of six research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program.

structure in certain detection applications. Later work [4, 5]
exploits rare-event structure in their detection applications
to enable even more aggressive energy saving. In addition,
many detection applications also have time-varying signal
and noise power structure that can be exploited. Early work
that heuristically exploits this can be found in [6, 7].

Our contribution in this work is to derive the optimal de-
tector scheduling policy that exploits the time-varying nature
of signal and noise power for an energy-constrained detection
system. The algorithm is a simple threshold test on the rela-
tive Bayesian risk between detectors. Since the threshold-test
structure is simple, it adds no overhead to the overall system.

2. FORMULATION

This section presents the framework for the detector schedul-
ing problem. The input information to the scheduler is the
2-tuple random process Xn = (Pn, Qn) with Pn being the
signal power and Qn being the noise power. The output deci-
sion U ∈ {1, 2} is the detector to use, assuming for simplicity
that there are only two available detectors in the system. The
scheduler itself is then a (possibly randomized) policy µ that
maps Xn to 0 if the first detector is used and 1 if the second
detector is used. From detection theory [8], a detector can be
modeled by the equation

TU (Y )
H1

≷
H0

τU

where H0, H1 are the two standard hypotheses: noise, and
signal plus noise, respectively and Y is the noisy observation
vector from one of the two hypotheses. The function TU maps
the given observation to a test statistic which is then thresh-
olded by τU to decide which hypothesis was true. The test
statistic for each detector is fixed so that the energy cost to
compute them can be quantified and denoted by e(U). Hence,
at a particular time instance n, given Xn, the scheduling pol-
icy µ, and the threshold τU , the system risk and energy con-
sumption (EC) can be defined as

Rsys(Xn, µ, τU ) , µ(Xn)R(Xn, τ1) + (1− µ(Xn))R(Xn, τ2)

EC(Xn, µ) , µ(Xn)e(1) + (1− µ(Xn))e(2)
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where R(Xn, τU ) is the respective detector risk that depends
on the threshold and the signal and noise power. The goal
then is to find the scheduling policy µ and thresholds τU that
minimize the average system risk subject to an average en-
ergy consumption. Therefore, the optimization problem to be
solved is

min
µ,τU

lim
N→∞

1

N

N∑
n=1

Rsys(Xn, µ, τU )

s.t. lim
N→∞

1

N

N∑
n=1

EC(Xn, µ) ≤ β

(1)

where β is the average energy constraint.
In this work it is assumed that the process Xn is wide-

sense stationary (WSS) and ergodic. Therefore the risk and
energy consumption of the system are also WSS and ergodic,
as the policy µ can not affect the natural process Xn. This
allows us to convert the time average in (1) to the ensemble
average with respect to the joint long-term statistics p(·) of
X .

min
µ,τU

E[Rsys(X,µ, τU )]

s.t. E[EC(X,µ)] ≤ β
(2)

Expanding (2) yields

min
µ,τ1,τ2

∫
dx p(x)

{
µ(x)[R(x, τ1)−R(x, τ2)] +R(x, τ2)

}
s.t.

∫
dx p(x)

{
µ(x)[e(1)− e(2)] + e(2)

}
≤ β

(3)
Observe in (3) that the thresholds only appear inside the

detector risk so that the minimization over thresholds can be
moved inside. This decouples (3) into two subproblems: op-
timization over thresholds, and optimization over policy.

2.1. Detector threshold optimization

The first subproblem is given by

min
τU

R(x, τU ), U = 1, 2

with

R(x, τU ) =π1

∫
dy f1(y)I(TU (y|x) < τU )

+π0

∫
dy f0(y)I(TU (y|x) ≥ τU )

where π1 = Pr(H1), π0 = Pr(H0), and f0(y) and f1(y) are
the observation’s densities under the two hypotheses H0 and
H1, respectively. I(·) denotes the indicator function.

Except for the special case where ratio between obser-
vation densities f1(y)/f0(y) is the same as the test statis-
tic TU (y), the optimal threshold is not the simple Bayesian
threshold τ∗U = π0/π1 [8]. In general, τ∗U need to be deter-
mined empirically, especially if a reliable observation model
is not available.

2.2. Scheduler policy optimization

The second subproblem is given by

min
µ

∫
dx p(x)

{
µ(x)[R(x, τ∗1 )−R(x, τ∗2 )] +R(x, τ∗2 )

}
s.t.

∫
dx p(x)

{
µ(x)[e(1)− e(2)] + e(2)

}
≤ β

Even though the above problem is a scheduling problem,
it shares exactly the same structure as the well-known detec-
tion problem in the Neymann-Pearson lemma [9]. Applying
the same machinery yields

µ∗(x) =


0 if M(x) > λ

1 w.p.ρ if M(x) = λ

1 if M(x) < λ

(4)

where M(x) =
R(x,τ∗

1 )−R(x,τ∗
2 )

[e(2)−e(1)] denotes the scaled relative
Bayesian risk between two detectors, and λ ∈ [0,∞), ρ ∈
[0, 1] are artificial variables [10]. The exact value of ρ and λ
are determined from the energy constraint.

The fact that the optimal policy given in (4) is a simple
threshold test is significant, as it implies that the addition of
the scheduling module to the system adds virtually no extra
overhead.

2.3. Robust scheduling policy

So far it is assumed that the signal and noise power informa-
tion is available during the operation of the scheduler. How-
ever, in practice, signal and noise power need to be estimated
[cf. Sec. 3.2]. How will this affect the scheduling policy ob-
tained in (4)? In fact, it can be shown that the optimal policy
structure in (4) is robust to estimated signal and noise power.
However, the policy threshold needs to be modified to ensure
that energy constraint is not violated even in the worst case
[cf. Appendix A].

3. ALGORITHMS

This section complements the above discussion by describing
the algorithm used to find the optimal policy threshold and
the algorithm to estimate signal and noise power.

3.1. Optimal policy threshold

Without loss of generality, assume that e(2) > e(1). Sub-
stituting the optimal policy mapping µ∗ into the energy con-
straint yields

E[EC(X,µ∗(λ))] =
∫ λ

−∞
dtm(t)e(1) +

∫ ∞
λ

dtm(t)e(2)

+m(λ)
[
(1− ρ)e(1) + ρe(2)

]
2737



Fig. 1. Solution of λ∗ and ρ

where m(t) =
∫
dxp(x)I(M(x) = t).

In practice, E[EC(X,µ∗(λ))] can be learned using train-
ing data. A sketch of E[EC(X,µ∗(λ))] is given in Figure 1.
From this, the solution for λ and ρ can be obtained. Depend-
ing on the energy constraint β:

• If β > e(2) then the average energy constraint is re-
dundant. This corresponds to the case β = β1, hence
λ = ρ = 0.

• If e(1) ≤ β ≤ e(2) then the energy constraint can be
satisifed with equality. If there is no point mass, i.e.
β = β2, then λ = λ∗2 and ρ = 0. If there is point mass,
i.e., β = β3, then λ = λ∗3 and ρ = ρ∗. The λ∗ and ρ∗

can be found using any root-finding method such as a
bisection search.

• If β < e(1) then the energy constraint is so stringent
that it cannot be satisfied.

3.2. Signal and noise power estimation

Signal power Pn and noise power Qn are estimated using
recursive averaging. The desired update equations for noise
power with smoothing coefficient αQ are

Hn
0 : Qn+1 = αQQn + (1− αQ)‖Yn‖2

Hn
1 : Qn+1 = Qn

(5)

and for the signal power with smoothing coefficient αP are

Hn
0 : Pn+1 = Pn

Hn
1 : Pn+1 = αPPn + (1− αP )

[
‖Yn‖2 −Qn

] (6)

Notice thatHn
0 andHn

1 are the hypotheses decided by the
system and thus different from the true hypotheses H0 and

Fig. 2. Optimal detector scheduling on sample GCW data

H1. Let πn1 = Pr(Hn
1 ). The update equation for πn1 with

smoothing coefficient απ is

πn1 = αππ
n−1
1 + (1− απ)I(Hn

1 )

Hence the two equations in (5) can be combined into

Qn+1 = α̃nQQn + (1− α̃nQ)‖Yn‖2

where α̃nQ = αQ + (1− αQ)πn1 . Similarly for (6)

Pn+1 = α̃nPPn + (1− α̃nP )
[
‖Yn‖2 −Qn

]
where α̃nP = 1− (1− αP )πn1 .

4. APPLICATION: DETECTION OF
GOLDEN-CHEEKED WARBLER

In this section we present the estimated performance of a de-
tection system using the above scheduling algorithm. The tar-
get of detection are the calls of an endangered bird species
named GCW [11]. The system employs two detectors. The
first detector is the energy detector with simple implemen-
tation, namely O(N) Multiply-ACcumulate (MAC) opera-
tions [12], where N is the size of the observation block Y .
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Fig. 3. Comparison between optimal scheduling and random
scheduling over various energy budget.

The second detector is the quadratic detector [1]. Its imple-
mentation requires O(N2) MAC operations [12]. Therefore
their respective cost e(1) and e(2) can be assigned to be N
and N2.

Figure 2 illustrates the system’s operation on five hours
of real GCW data, recorded by Professor Rama Ratnam from
the Biology Department at the University of Texas at San An-
tonio [11]. The data is re-sampled at 16 kHz and processed
in frames of size N = 128. It is then manually labeled as
shown in the second window of Figure 2. The third window
shows the tracked SNR using the algorithm in Section 3.2.
The two detectors are managed by the scheduling algorithm
described in Section 2.2. As can be seen from the fourth win-
dow, the second detector is run only when SNR is low while
the first detector runs in the remaining time. The fraction of
time between running the second detector and the first detec-
tor is determined by the energy budget. The operating point
used in this case is labeled in Figure 3.

The optimal energy-performance curve is shown in Fig-
ure 3 as the solid line. The energy-performance curve of
a random scheduling system, which is a straightforward but
naive approach for this application, is shown in dash line. In
this figure, the labeled points together illustrate the gap in en-
ergy budget required between the optimal scheduling system
and the random scheduling system for the same level of de-
sired performance. Namely, the optimal scheme is 3.5x more
energy-efficient than the random scheme at the same level of
detection probability. The number is 2x for false alarm prob-
ability. Furthermore, the optimal scheduling system’s perfor-
mance scales gracefully over an order of magnitude of the
energy constraint.

5. CONCLUSION

In detection problems with an energy constraint, information
about the time-varying signal and noise power can be used
to optimally elect between the high performance but sophis-
ticated detector and a simple but inexpensive one. The ma-
chinery to exploit this information by the scheduler is simple
and hence no overhead cost is added. This results in a system
that consumes much less energy while preserving adequate
performance. An extension of this work is to implement the
scheduling algorithm on an embedded detection hardware so
that the energy-saving potential can truly be realized.

A. SOLUTION TO THE ROBUST FORMULATION

Assume that the estimated signal and noise power has a joint
long-term statistic g(·) that is different from the true one p(·).
For accuracy, g(·) needs to be modeled in (3) and the contam-
inated model [8] is proposed. For a given tolerance ε > 0, this
model assumes that the estimated signal and noise power are
correct (i.e. drawn from the true density p(·)) with probability
1 − ε and incorrect (i.e. drawn from some bad density h(·))
with probability ε [13]. Namely,

g(x) = (1− ε)p(x) + εh(x)

It is desirable to design a robust scheduling policy µR that
can safeguard against the least favorable density gL, i.e.

min
µ

max
g

∫
dxg(x)

{
µ(x)[R(x, τ∗1 )−R(x, τ∗2 )] +R(x, τ∗2 )

}
s.t.

∫
dxg(x)

{
µ(x)[e(1)− e(2)] + e(2)

}
≤ β

(7)
The condition of von Neumann’s minimax theorem can

be verified easily to show that a saddle point solution (µR,
gL) to (7) exists. Observe that for any density g, the robust
policy structure is still given by (4), i.e. µR = µ∗. In other
words, the optimal policy in (4) is robust to estimated signal
and noise power. The robust policy threshold λR, however,
depends on the least favorable density that is yet to be found.
Finding the least favorable gL is the same as finding the least
favorable hL. This is equivalent to solving

max
h

∫
dxh(x)

{
µ(x)[R(x, τ∗1 )−R(x, τ∗2 )] +R(x, τ∗2 )

}
(8)

Denote all the terms inside the curly bracket in (8) to be
f(x). Applying Schwarz’s inequality to the integral in (8) re-
veals that the least favorable hL(x) is proportional to f(x).
Since hL is a density, it is given by hL(x) = f(x)/

∫
f(t)dt.

Using this least favorable density, a robust policy threshold
can be found using the approach in Section 3.1. The purpose
of the robust policy threshold is to ensure that energy con-
straint is not violated even in the least favorable case.
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