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ABSTRACT

Algorithmic noise tolerance (ANT) is an effective statistical
error compensation technique for digital signal processing
systems. This paper proves a long held hypothesis that ANT
has a strong Bayesian foundation, and develops an analytical
framework for predicting the performance of, and designing
performance-optimal ANT-based systems. ANT is shown
to approximate an optimal Bayesian detector and an opti-
mal minimum mean squared error (MMSE) estimator. We
show that the theoretically optimum threshold and the opti-
mal threshold obtained via Monte Carlo simulations agree to
within 8%, with performance degradation of at most 2.1%
for a variety of error probability mass functions. For a 2D-
DCT implemented in a 45nm CMOS process, we find similar
results where the thresholds have a 7.8% difference. Fur-
thermore, both analysis and simulations indicate that ANT’s
probability of error detection is robust to the choice of the
threshold.

Index Terms— Low-power, error-resiliency, Bayesian,
detection, estimation, voltage overscaling

1. INTRODUCTION

As CMOS technology scales into the sub-22nm regime, non-
idealities due to process, temperature and voltage variations,
and soft errors, are increasingly becoming commonplace.
These variations often result in uncertain gate delays and
leakage currents leading to intermittent errors in computa-
tion. This trend is expected to worsen in the next decade
[1]. Present day approaches seek to avoid these errors by
designing for the worst-case scenario. These methods are
often wasteful and often unaffordable in many power-limited
applications. Design methods based on error resiliency are
much more energy efficient.

Statistical techniques have been developed to improve the
performance of signal processing systems when subject to er-
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rors and noise [2, 3]. Recently, such statistical techniques
have been applied to tolerate errors in hardware [4]. Such sta-
tistical error compensation (SEC) techniques have been ap-
plied in an ad-hoc manner. In this paper, we provide a the-
oretical analysis for algorithmic noise tolerance (ANT) [5],
which is a specific SEC technique.

ANT tolerates errors by employing a lower-complexity
estimator designed to be less prone to error (see Fig. 1(a))
as compared to the main block. When the output of the es-
timator disagrees with the output of the main block by more
than a certain threshold τ , the estimator output is used as the
final corrected output. Though simple, ANT has proven to be
very effective in tolerating errors, mainly because it compen-
sates for errors statistically at the system level.

In the design of ANT, the threshold τ is an important
design parameter that was previously chosen empirically. In
this paper, we establish a link between ANT and the Bayesian
detection and estimation framework. We show ANT can be
viewed as a two step process, where detection of an error
event is performed, followed by estimation of the correct
value. The detection stage is a thresholding detector, while
the estimation stage is an approximation to the minimum
mean square error (MMSE) estimator. We further derive ex-
pressions for determining the optimal threshold τ , and verify
it with Monte Carlo simulations. Thus, this paper proves the
long held hypothesis that ANT has a strong Bayesian foun-
dation. Furthermore, this work opens up the possibility of
establishing a similar basis for other SEC techniques.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on ANT. In Section 3 we formu-
late the detection and estimation problem, then derive the op-
timal decision rule under the Bayesian estimation framework.
Section 4 compares the performance of ANT and the optimal
decision rule via a simple example, and a 2D-DCT applica-
tion. Section 5 concludes the paper.

2. ALGORITHMIC NOISE TOLERANCE

Algorithmic noise-tolerance (ANT) [5] in Fig. 1(a) incorpo-
rates a main block and an estimator. The main block is permit-
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Fig. 1: Algorithmic noise tolerance: (a) block diagram, and
(b) error distributions.

ted to make hardware/timing errors, but not the estimator. The
estimator is a low-complexity block (typically 5%-to-20% of
the main block complexity) generating a statistical estimate
of the correct main block output, i.e.,

ya = yo + η (1)
ye = yo + ε (2)

where ya is the actual main block output, yo is the error-free
main block output, η is the hardware error, ye is the estima-
tor output, and ε is the estimation error. ANT exploits the
difference in the statistics of η and ε (see Fig. 1(b)). The fi-
nal/corrected output of an ANT system ŷ is obtained via the
following decision rule:

ŷ = θANT (y) =

{
ya, if |ya − ye| < τ

ye, otherwise
(3)

where y = (ya, ye) is the observation vector, and τ is an
application-dependent parameter chosen empirically to maxi-
mize the performance of ANT. Under the conditions outlined
above, it is possible to show that

SNRuc � SNRe � SNRANT ≈ SNRo (4)

where SNRuc, SNRe, SNRANT and SNRo are the signal-
to-noise-ratios of the uncorrected main block (η dominates),
the estimator (ε dominates), the ANT system, and the error-
free main block (ideal), respectively. Thus, ANT detects
and corrects errors approximately, but does so in a manner
that satisfies an application-level performance specification
(SNR). Several low-overhead SEC techniques have been pro-
posed by exploiting data correlation, system architecture, and
statistical signal processing techniques [6].

3. ANALYSIS OF ANT

In this section, we formulate a general detection and estima-
tion problem with two observations. The optimal detection
and estimation rule is derived and shown that ANT (Fig. 1) is
a low-complexity approximation of this optimal solution.
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Fig. 2: The Bayesian Framework for ANT.

3.1. Problem formulation

The detection and estimation problem assumes the observa-
tion set y (see Fig. 2) given by (1) and (2). The detector
assumes binary hypotheses: 1) the error-free event H0 (i.e.
η = 0), and the error event H1 (i.e. η 6= 0). The goal is to
find the optimal decision rule δ(y|Pη, Pε), which chooses one
hypothesis based on the observation y, and the error statistics
Pη and Pε. Then estimation is performed via an estimation
rule ŷ = θ(y), which finds the best estimate of yo based on
a certain optimization criteria. This is different from a clas-
sical detection and estimation problem, as the hypotheses are
not based on yo, but instead on η, and that the estimation step
utilizes the detection stage information to simplify the esti-
mation process. This distinction turns out to be crucial in
enabling a simplification of the error compensation scheme
leading to ANT.

The following assumptions will be made. The error-free
main block output yo, and the errors η and ε are a fixed point
number with bit width N , and defined as a random variable
over the set S = {−2N , ..., 2N − 1}. Setting the bit width of
the output as N , the cardinality of S is 2N . Furthermore, yo
will be assumed to be uniformly distributed and thus p(yo) =
1
2N

. The errors η and ε are assumed to be independent. We
will further assume that η is zero mean and Pη has a peak at
zero (that represents the error-free probability), is symmetric
about the mean, and Pη(α) ≥ Pη(β) for |α| ≥ |β|, β 6= 0.
On the other hand, ε is assumed to be zero mean, and Pε is
symmetric about the mean, and Pε(α) ≤ Pε(β) for |α| ≥ |β|,
as depicted in Fig. 3(a). Large magnitude values of ε are as-
sumed to be extremely unlikely. These assumptions are moti-
vated by noting that timing induced hardware errors are large
in magnitude due to LSB first computation, and estimation
errors are Gaussian (subsampled estimators) or uniform dis-
tributed (reduced precision estimators). An example condi-
tional PMF of timing errors, conditioned on the error event
induced by voltage overscaling (VOS) is given in Fig. 3(b).
This error statistic was obtained through Verilog simulations
from a 16-bit ripple carry adder with voltage overscaling ap-
plied. It can be seen that large magnitude errors occur with
large probability which justifies our assumption for Pη .
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3.2. Detection

We perform Bayesian hypothesis testing to detect the error
event. For equally likely priors, the decision rule is given by
comparing the likelihoods [7]:

p(H1|y)
H1

≷
H0

p(H0|y) (5)

where the likelihoods are given by:

p(H0|y) =
1
2N
Pη(0)Pε(ye − ya)

p(y)

p(H1|y) =
p(y)− 1

2N
Pη(0)Pε(ye − ya)
p(y)

(6)

where the independence assumption between Pη and Pε has
been used. The posterior probability p(y) can be shown to
be:

p(y) =
∑
yo

p(yo)Pη(ya − yo)Pε(ye − yo)

=
1

2N

∑
η

Pη(η)Pε(η + (ye − ya)) (7)

Defining the likelihood ratio L = p(H1|y)
p(H0|y) , the optimal

detection rule δ(y) will be denoted as:

δ(y) =

{
H1 ifL ≥ 1

H0 ifL < 1
(8)

From (6) and (7), it can be seen that L only depends on the
difference of the observed outputs d = ya− ye. Furthermore,
given that Pε is decreasing in distance from the mean and
symmetric, Pη(0)Pε(ye − ya) is a decreasing function in |d|.
Also, p(y) is symmetric, and convex in the half plane and
given that Pε is heavily concentrated around the mean, the
minimum of p(y) is close to 0. Thus we can approximate
p(y) as an increasing function in |d|. Now we can rewrite the
decision rule as:

δ(y) =

{
H1 if |d| ≥ τ
H0 if |d| < τ

(9)

where the theoretically optimal threshold τ?a,p is the value of
|d| when L=1, and satisfies:∑

η

Pη(η)Pε(η + τ?a,p) = 2Pη(0)Pε(τ
?
a,p) (10)

We can see that the resulting optimal decision rule (9) is
equivalent to the detection rule (3) used in ANT. Furthermore,
we have shown that the optimal threshold to be used in ANT
is given by (10).

)(P

)(P

(a) (b)

Fig. 3: Example error PMFs: (a) depiction of Pη and Pε that
increase or decrease in distance from the mean, and (b) volt-
age overscaling (VOS) induced timing errors.

3.3. Estimation

When H0 is detected (η = 0), the main block output is used
as the corrected output i.e., ŷ = ya. When H1 is detected, a
more complex estimation needs to take place. There are many
different optimality conditions available for estimation such
as minimum mean squared error (MMSE), minimum mean
absolute error (MMAE), and maximum a posteriori probabil-
ity (MAP). In this paper, we will focus on MMSE.

The optimization criteria will be to minimize E(ŷ − yo)2
given y and that H1 has been detected where the expectation
is over yo. It is well known that the MMSE estimator is the
conditional mean, i.e. the estimate ŷ(y) = E(yo|y, H1) [7].
As the posterior distribution of yo is:

p(yo|y, H1) =
1

1− pe
Pη(ya − yo)Pε(ye − yo) (11)

the MMSE optimal estimator will be:

ŷ = θ(y) =

{
ya if δ(y) = H0∑
yo 6=ya p(yo|y, H1)yo if δ(y) = H1

(12)

where ya is excluded in the summation as it corresponds to
Ho. Determining ŷ is a complex and power hungry task.
In ANT, an approximation to the optimal estimator has been
made, such that ŷ = ye. This estimator can be implemented
by a simple mux with the output of the detection stage used as
the control (Fig. 1(a)). In Section 4, we will show that such
approximation results in minimal performance degradation.

4. COMPARISON OF SIMULATION AND ANALYSIS

In this section, we will first apply ANT on a simple example
and compare the results with analysis. For this example, all
signals are considered to be 8 bits (N = 8). The error PMFs
Pη and Pε are constructed as follows. Pε is a truncated dis-
crete Laplace distribution with parameter a = 0.9 normalized
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Fig. 4: Simulation results for a simple example: (a) probabil-
ity of correct detection and MSE vs. τ , (b) error PMF, and (c)
τ?s,p, and τ?a,p for different PMFs.

by a constantA. Pη is a circularly shifted version of Pε scaled
with the probability of error pe = 0.1, and a peak of 1− pe at
0. The PMF is depicted in Fig. 4(b), where the peak at Pη(0)
has been clipped for better visibility.

Pε(k) = A
1− a
1 + a

a|k|,−128 ≤ k ≤ 127 (13)

Pη(k) =

{
1− pe if k = 0

pePε(
(
k + 2N−1

)
2N

) if k 6= 0
(14)

The performance of ANT with varying thresholds are
shown in Fig. 4(a). The design of an ANT system would
go through such simulations to obtain the optimal threshold.
For this example, Monte Carlo simulations show that the
probability of correct detection is maximum at τ?s,p = 70,
with Pdet = 0.9986 which is very close to τ?a,p = 68, the
theoretical optimum obtained from (10). Similarly, simu-
lations indicate that the MSE is minimized at τ?s,m = 65,
with MSE=27.21, which is also very close to the MSE=25.19
obtained via the optimal estimator in 12. Furthermore, the
utility of our analysis in design can be seen by the fact that
the MSE achieved via simulations with τ = τ?a,p is 33.55,
which corresponds to a difference of 0.4% when normalized
with respect to the maximum MSE obtained when τ = 128.
Note that the detection probability and MSE curves are flat
around the optimal point. This shows that the exact value of
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Fig. 5: DCT Example: (a) error statistics of a voltage over-
scaled DCT block at Vdd = 1.1V (pe = 0.0043), and
Vdd = 1.0V (pe = 0.0374), and (b) the resulting probabil-
ity of correct detection and MSE vs. τ .

the optimal threshold is unnecessary to achieve near optimal
performance, and that both τ?a,p and τ?s,p are good approxima-
tions for τ?s,m. Similar results (see Fig. 4(c)) were obtained
with different forms for Pη and Pε, as long as they met the
assumptions outlined in Section 3. For the total of 20 cases
shown in Fig. 4(c), the maximum difference in τ?s,p and τ?a,p
was 11, while on average the difference was 6.6. In terms of
MSE, this corresponds to a maximum degradation of 2.1%,
with an average degradation of 0.6% when normalized to the
maximum MSE.

We have also applied ANT to a 2D-DCT image compres-
sion application. The setup of the application is identical as
in (1). The main block is an 8-bit input, 8-bit output, 8 × 8
2-D DCT block followed by a quantizer using Chen’s algo-
rithm [21], with mirror adders and array multipliers [22] as
fundamental building blocks, implemented in a commercial
45nm, 1.2V CMOS process. Pη is characterized at various
different voltages through delay based Verilog simulations,
with two examples shown in Fig. 5(a). Pη has a few large
amplitude errors that have a high probability of occurrence,
which follows our assumptions for η but not fully. Only the
main 2D-DCT block is subject to voltage overscaling (VOS),
and hence is the only block that exhibits errors. The estimator
is a reduced precision version of the main block. Figure 5(b)
shows the simulation result at Vdd = 1V . Simulations show
τ?s,p = 55, while τ?s,m = 57. Using (10), τ?a,p = 65. We
can see that even though Pη does not satisfy the assumptions
in Section 3, the values are similar. In this case as well, the
detection probability exhibits a very flat behavior around τ?p
and shows that ANT is robust to the value of the detection
threshold.

5. CONCLUSION

In this paper we have provided a statistical analysis of ANT,
to aid the design of error resilient DSP systems.
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