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ABSTRACT 

 

This paper proposes an energy-efficient VGA full-frame feature 

extraction processor design. It is based on the SURF algorithm and 

makes various algorithmic modifications to improve efficiency and 

reduce hardware overhead while maintaining extraction 

performance. Low clock frequency and deep parallelism derived 

from a one-sample-per-cycle matched-throughput architecture 

provide significantly larger room for voltage scaling and enables 

full-frame extraction. The proposed design consumes 4.7mW at 

400mV and achieves 72% higher energy efficiency than prior work. 

 

Index Terms— Feature extraction, Energy-optimal design, 

SURF 

 

1. INTRODUCTION 

 

Various feature extraction algorithms process input image or video 

to search for interest points based on different characteristics such 

as local gradient and edges. Each interest point is then described 

and a multi-dimensional feature vector is generated. Generally 

feature vectors extracted from an input video or image are 

compared against vectors already stored in a database and similar 

feature vectors will be matched. 

Robust feature extraction can be used for various applications 

such as visual navigation, pose estimation, and object recognition. 

Most feature extraction algorithms incur high computational cost 

since a full image must go through multiple filters and often >1000 

feature vectors can be extracted. Therefore, it is infeasible to 

implement these algorithms directly on hardware due to high peak 

performance requirements and large memory space for 

intermediate data. 

However, an embedded system or platform with robust feature 

extraction enables a variety of useful applications. One example is 

a MAV (Micro Autonomous Vehicle) with autonomous navigation 

(Fig. 1). A video camera and embedded processor mounted on a 

MAV can extract feature vectors from the surrounding landscape. 

This can be used to determine posture or generate navigation maps 

by comparing against features extracted from previous frames or 

stored in a database. 

Conventional hardware implementations are highly specialized 

for certain applications and extract features only from selected 

ROIs (Region of Interest) to significantly reduce computation. 

Although this enables energy-efficient feature extraction, a pre-

processing algorithm that defines ROIs dominates overall feature 

extraction performance and must be very accurate. In addition, 

such approaches are not applicable to applications that require 

analysis of an entire image such as visual navigation. 

In this paper we propose a highly energy-efficient VGA full-

frame feature extraction processor based on SURF (Speeded-Up 

Robust Features). First, we optimize the original SURF algorithm 

to reduce computation and hardware cost significantly while 

maintaining extraction performance. Second, we propose a 

hardware architecture with matched-throughput and low clock 

frequency that leverages a highly parallelized data path. The 

proposed design is implemented in 28nm CMOS technology and 

simulations show it achieves 72% higher energy efficiency than 

prior work. 

 

2. PRIOR WORK 

 

There is active research on ROI-based feature extraction 

implementations to alleviate high peak performance requirements 

and enable low-power hardware implementations. Authors in [3] 

propose an object recognition SoC (System on a Chip) based on 

the SIFT (Scale-Invariant Feature Transform) algorithm and 

UVAM (Unified Visual Attention Model), which selects attentive 

points from input video. It also employs an analog-digital mixed-

mode inference engine for initial ROI selection and 4 SIMD 

(Single Instruction, Multiple Data) and 32 MIMD (Multiple 

Instruction, Multiple Data) processing elements to perform feature 

extraction and matching. Reference [5] improves this further by 

proposing a CAVAM (Context-Aware Visual Attention Model) 

that considers temporal similarities between successive images as 

well. In [4], a full-HD wide viewpoint object recognition SoC 

based on SIFT is proposed. It simplifies the object matching stage 

by applying a vocabulary tree to characterize an object as a 

histogram vector. This reduces the otherwise prohibitive amount of 

memory accesses due to individual feature comparisons. Authors 

in [6] employ Haar-like features for long-range on-road object 

detection and use a knowledge-based Kalman object tracking 

scheme. Generally Haar-like features require significantly less 

computation than SIFT and this enables low-power operation with 

reasonable accuracy. 

Although defining ROIs significantly reduces the 

computational workload, some applications require feature 
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Figure 1. MAV with autonomous navigation system. 
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extraction from the entire image. In addition, the accuracy of the 

pre-processing step that chooses ROIs directly impacts the 

performance of entire process and leads to lower overall extraction 

accuracy than a full-frame approach. Furthermore, a multi-core 

architecture generally requires a high-throughput communication 

network among multiple cores and suffers from substantial 

memory accesses to intermediate data. Also, the varying 

computational needs of feature extraction makes it necessary to 

design a system capable of high peak performance. Low-power 

circuit techniques suitable for variable throughput systems such as 

DVFS (Dynamic Voltage and Frequency Scaling) inevitably incur 

overhead for tasks such as voltage regulation. 

 

3. PROPOSED APPROACH 

 

To overcome these limitations, we propose an accelerator-based 

approach to feature extraction with a highly-parallelized 

architecture. We do not narrow the extraction scope and extract 

general features from an entire image. Therefore this accelerator is 

suitable for general applications including visual navigation and 

pose estimation of MAVs. Also, we co-optimize the hardware 

architecture and algorithm to maximize energy efficiency while 

maintaining performance. 

 

3.1. Background: SURF algorithm 

 

The SURF algorithm enables low power and low cost 

implementations in hardware, while providing similar or improved 

feature extraction performance compared to SIFT [1]. It first 

calculates a 2-D integrated image from an input image. This 

simplifies integration-based filter response calculations since 

integration over a specific regime can be replaced with 2 additions 

and 2 subtractions of the integrated image. This also significantly 

reduces the amount of memory accesses. SURF consists of two 

main steps: detection and description. The detector first applies 

LoG (Laplacian of Gaussian) box filters with different scales to the 

input image. It then searches for local maxima in 3×3×3 location-

scale space, which represent interest points from the given image, 

and sends them to the descriptor. The descriptor applies Haar 

Wavelet Filters to the input image and gathers filter responses 

around each interest point. Finally it generates scale- and rotation-

invariant vectors by orientation assignment and normalization. 

 

3.2. Modified SURF algorithm 

 

Original SURF employs multiple octaves with each octave 

consisting of 4 different scales, enabling feature extraction from a 

wide range of scales. However, for the given 640×480 video size 

the number of detected features in higher octaves is relatively small 

and those features do not significantly contribute to scale-

invariance performance. Therefore, we propose to use a single 

octave with an additional scale for filter size of 33 to compensate 

for any performance degradation due to the use of a single octave 

(Fig. 2). 

After interest points are detected in the location-scale space, 

SURF finds the exact location of maxima by interpolating the 

determinant of the Hessian matrix as in [8]. Since each point is 

interpolated in 3×3×3 location-scale space, this requires multiple 

matrix arithmetic operations that are costly in terms of hardware 

implementation. To save power and area, we propose a fast 

localization scheme as shown in Fig. 3. If the actual maxima is 

expected to be very close to the right (left) of the detected interest 

point, then we simply choose the right (left) point as the interest 

point. 

In the description stage of the original SURF algorithm, the 

orientation of each interest point is determined first. Haar wavelet 

filters are applied to the regions around each point and filter 

responses are gathered for a sliding orientation window at different 

angles. The orientation is found to be the angle of the sliding 

window with the largest summation of all responses in the window. 

Based on this orientation, the sampling region is then redefined as 

a shape of a rotated square. This incurs significant overhead since 

Haar wavelet filter responses must be computed twice; separately 

for orientation decision and feature description. To remove this 

overhead, we propose a circular sampling region divided into 32 

subsections as shown in Fig. 4. Even if an orientation is not 

determined prior to filter response calculation, the sampling region 

is guaranteed to be the same owing to the circular shape. Therefore, 

we can first apply Haar wavelet filters and determine orientation 

based on responses gathered from each subsection. Then we have 

to post-process obtained responses based on the orientation 

accordingly to achieve rotation-invariance. Responses in each 

subsection are summed and as a result a single vector is produced 

for each subsection. The subsection with the largest vector 

magnitude is then chosen to represent the orientation of that vector. 

Finally, all vectors are merged together beginning from the largest 

to form a feature vector, and each vector is rotated based on the 

orientation found previously. Since the number of sampling points 

of 2kth subsections is different from 2k+1th subsections, responses 

are summed over 2 consecutive subsections (window size of 22.5°, 

moving 11.25° each step). 

For better differentiation, we propose outer-product based 

vector separation. Original SURF gathers absolute values of x- and 

y- dimensions to double the dimension and enhance differentiation 

32 subsections

- 11.25° rotations for each

- 2k
th
: 9 pixels

- 2k+1
th
: 10 pixels

 
Figure 4. Proposed circular sampling region. 
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Figure 3. Proposed fast localization scheme. 
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performance. However, this can be achieved only when the 

orientation is known prior to vector summation over subsections,.  

This is not possible in modified SURF since only a single vector is 

stored for each subsection instead of entire filter responses after 

orientation assignment. To mitigate this issue, we propose to build 

two different dimensions for each subsection. First, the filter 

response at each sampling point is categorized based on the sign of 

x- and y- axis. If the sign of x-axis vector is the same as that of the 

y-axis, it is added to the first dimension. Otherwise, it goes into the 

second dimension. After an orientation is determined based on the 

subsection with largest vector magnitude, each dimension is 

rotated by the orientation angle. Finally, the sum of these two 

dimensions becomes the first half dimensions and the sum of 

absolute values of each dimension becomes the remaining half of 

the feature vector. The final feature vector has 32 dimensions. This 

modification reduces the required memory space by 89% for each 

description processing element. 

Fig. 5 and Fig. 6 shows simulated scale- and rotation-

invariance performance of original and modified SURF algorithms 

for images from test vehicle. Results clearly show that modified 

SURF provides similar performance to the original algorithm. 

 

3.3. Optimized hardware architecture 

 

Voltage scaling is one of the most promising techniques for low 

power computation. However, low operating voltages significantly 

reduce performance and circuits must be carefully designed to meet 

a given performance requirement. Instead of a variable-throughput 

multi-core system, we propose to use a throughput-matched one-

sample-per-cycle architecture optimized to maximize the benefits 

of voltage scaling. A highly-pipelined architecture with low clock 

frequency provides more room for voltage scaling [8]. Since FIFO 

(First In, First Out) is smaller, faster and more energy-efficient 

than SRAM for given size in subthreshold regime [2], an 

accelerator-based approach provides an improved hardware 

implementation compared to a multi-core architecture. 

Since modified SURF has its largest filter size of only 33 pixels 

and does not require full image storage, an input image is divided 

into 11 subsections (Fig. 7) to reduce intermediate data storage. 

Subsections are overlapped by 88 pixels to guarantee feature 

extraction at borders. Fig. 9 shows the overall architecture. The 

detector first generates the 2-D integrated image from an original 

image. Integrator consists of only two adders and one 124-entry 

FIFO and produces one pixel of the integrated image per cycle in 

real-time.  The integrated image goes through 5 different size 

filters that represent scales of 9, 15, 21, 27, and 33 pixels, 

respectively. Box LoG filters are implemented with multiple FIFOs 

to generate delayed images with different delays. A 3-D local 

maxima detector searches for local maxima in the 3×3×3 location-

scale space. A total of 26 subtractions are used to determine if a 

given point is larger than all neighboring pixels. However, 

computation is reduced significantly by reusing previous results. 

At each cycle, the lower 3 pixels of each scale are processed and 

the location of the maximum value among them is attached to the 

lower middle pixel as an additional 2b. Then each cycle target 

point has to be compared against 8 pixels (maxima of each row) 

instead of 26 (Fig. 8). This technique reduces the number of 

comparisons by > 3×. Fast localization is then performed as 

described in the previous section and the interpolated location is 

sent to the descriptor. 

Performance Test

1) Extract Features from Original and Scaled/Rotated 

Images

2) Match Features from Two Images

Valid Match Ratio = 
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Figure 5. Scale-invariance performance comparison. 
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Figure 6. Rotation-invariance performance comparison. 
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Figure 7. Overlapped processing subsections. 
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Figure 8. Proposed maxima detection scheme. 
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The descriptor first integrates the raw image to produce a 2-D 

integrated image. Although the two 2-D integrators in the detector 

and descriptor are identical, using separate modules saves 56% of 

FIFO buffer area since the integrated image has more than 2× 

larger bitwidth. The descriptor has a 7067-entry FIFO to delay the 

image while the detector processes the image and searches for 

interest points. It consists of three 113-entry FIFOs and eight 841-

entry FIFOs. Three different Haar wavelet filters are applied to the 

integrated image and filter responses are shared across all 

processing elements, which greatly reduces communication 

overhead for multiple processing elements. A controller assigns 

each interest point to an idle PE (processing elements, 40 PEs in 

total). PEs that are not in use are power-gated to save active power. 

Finally, vectors generated from processing elements are post 

processed. The largest vector is determined from among 16 vectors 

and an orientation is assigned accordingly. Then the entire feature 

vector is re-ordered and rotated based on it. 

 

4. EXPERIMENTAL RESULTS 

 

The proposed feature extraction processor was implemented and 

simulated in a commercial 28nm CMOS technology. A standard 

cell library was re-characterized at the target operating voltage of 

400mV.  The proposed design was synthesized using Synopsys 

Design Complier and this re-characterized standard cell library. 

VCD (Value Change Dump) activity file was also extracted from 

Verilog simulation with a structural netlist. Total power 

consumption was measured with PrimeTime simulation that 

includes parasitic RC elements extracted from post-layout. 

Simulations show that the proposed design consumes only 

4.7mW at 400mV with clock frequency of 27MHz while extracting 

features from 30 fps VGA video. Average performance is 

149GOPS and power efficiency is 31.8 TOPS/W. Table 1 shows 

characteristic comparison with other fabricated feature extraction 

processors. The proposed design has significantly lower clock 

frequency compared to the >100MHz of other works [3-6] and 

achieves 72% better energy efficiency. Energy efficiency of 

different technology is scaled as (Scaled Efficiency = Reported 

Efficiency × Technology2/28nm2 × Voltage/400mV). Figure 10 

shows a test image with 1421 features extracted from proposed 

design. Interest points detected near edges are suppressed for 

robust feature matching performance. 

 

5. CONCLUSIONS 

 

In this paper, we proposed a highly energy-efficient feature 

extraction processor based on SURF algorithm. First, we modify 

the original SURF algorithm to maximize energy efficiency and 

make it suitable for hardware implementation while maintaining 

performance and accuracy. Second, a matched-throughput 

parallelized architecture with low clock frequency and operating 

voltage was proposed. These algorithm-architecture co-

optimization techniques enable very low-power full-frame feature 

extraction and achieve 72% better energy efficiency than prior 

state-of-art. 
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Figure 9. Proposed feature extraction processor architecture. 

 
Figure 10. Test image with extracted features. 

Table 1. Characteristic comparison with other fabricated 

feature extraction processors. 

Technology

Base Algorithm

Design Target

[4]Proposed [5]

28nm 65nm 130nm

Feature 

Extraction

Object 

Recognition

Object 

Recognition

SURF SIFT SIFT

400mV 1V 0.7~1.2V

[6]

40nm

Object 

Recognition

Haar-like

0.9VCore Voltage

Power

Scaled Efficiency

4.7 mW 52.5mW 320mW 69.3mW

Extraction Scope Entire Frame ROI only ROI only ROI only

Input Video 640×480 1920×1080 1280×720 1280×960

31.7TOPS/W 14.6TOPS/W 7.8TOPS/W 18.4TOPS/W
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