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ABSTRACT

Unlike deblocking filter of H.264/AVC, deblocking filter of
HEVC is computationally less complex and offers more par-
allelization possibilities. In this paper we present comparison
of three different parallelization implementations of deblock-
ing filter which operate on picture by picture basis. The first
method filters the vertical edges and horizontal edges in sep-
arate passes. The other two methods combine the vertical and
horizontal edge filtering in a single pass. On a 6 core ma-
chine with 6 threads running concurrently, experimental re-
sults showed an average accelerating factor of 4.5, 5 and 5
for each of the implementation methods on 1080p, 1600p and
2160p sequences respectively.

Index Terms— HEVC, Deblocking Filter, Parallelization

1. INTRODUCTION

High Efficiency Video Coding standard (HEVC) is the latest
video coding standard under development by the Joint Collab-
orative Team On Video Coding (JCT-VC) [5][6][10]. Similar
to H.264/AVC [17], HEVC uses block based prediction. The
resulting block based prediction error is quantized and then
coded. The blocking artifacts which result due to quantization
are typically filtered using deblocking filters [7]. In addition
to deblocking filter (DBF), HEVC introduces a new in loop
filtering stage called as SAO (Sample Adaptive Offset) [8].
SAO filter is located after the deblocking filter stage and is
used to filter the ringing artifacts. Typically HEVC decoding
can be categorized into three stages. The first stage is the en-
tropy decoding and picture reconstruction stage (CTB (Cod-
ing Tree Block) or LCU (Largest Coding Unit) decode stage),
where the bit stream is parsed and slice data is decoded. The
second stage is the DBF. The third stage is SAO filtering.

Compared to the DBF of AVC, DBF of HEVC is compu-
tationally less complex and offers more parallelization possi-
bilities. This is mainly due to the fact that DBF in HEVC is
performed over an grid of 8x8 samples whereas in AVC, DBF
is performed over each grid of 4x4 samples. Similar to AVC,
DBF in HEVC also modifies a maximum of three samples on
either side of the edge. By exploiting the new parallelization

possibilities, we propose three different parallel implementa-
tions of DBF in HEVC. All the three methods operate with
the whole reconstructed picture as input. The first method
parallelizes the vertical edge filtering and horizontal edge fil-
tering in separate passes. The other two methods combine the
vertical edge filtering and horizontal edge filtering in a single
pass.

The parallel DBF methods are implemented by modifying
the DBF of HM-8.0 reference software [9]. On a 6 core ma-
chine with 6 threads running concurrently, experimental re-
sults showed an average accelerating factor (AF) or speedup
factor close to the number of cores for all three methods. A
summary of the rest of the paper is as follows : Section 2
presents the related work. Section 3 explains the different
parallel DBF implementation methods. Section 4 gives the
evaluation and results. Section 5 concludes the paper.

2. RELATED WORK

[1] proposes parallel HEVC decoders using Wavefront Paral-
lel Processing (WPP) and Tiles [10]. WPP and Tiles are two
new tools introduced in HEVC standard to facilitate efficient
parallelization of the LCU decode stage. The WPP decoder
of [1] and the decoder presented in [2] parallelize all the three
stages (LCU decode, DBF and SAO) in a single LCU decode
loop. The Tiles decoder of [1] parallelizes all the three stages
in a separate pass. In Tiles decoder of [1], DBF is parallelized
by performing the vertical edge filtering and horizontal edge
filtering in separate passes.

In our paper we propose three parallelization methods for
DBF. The first method is similar to the DBF parallelization
used in Tiles decoder of [1], but the way LCUs are assigned to
threads, to perform DBF parallely differs. The second and the
third method combine the vertical and horizontal edge filter-
ing in a single pass. The paper then compares the accelerating
factors achieved by each of the implementation methods.

This work is done as part of 4EVER, a French national project with sup-
port from Europe (FEDER), French Ministry of Industry, French Regions
of Brittany, Ile-de-France and Provence-Alpes-Cote-d’Azur, Competitivity
clusters Images&Reseaux (Brittany), Cap Digital (Ile-de-France) and Solu-
tions Communicantes Sécurisées (Provence-Alpes-Cote-d’Azur).
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3. EXPLANATION OF DIFFERENT
PARALLELIZATION APPROACHES

From the perspective of the decoder the steps for deblocking
are as follows:
∙ Perform horizontal filtering of all vertical edges in the

picture. The different steps in horizontal filtering are:
– calculate the boundary strength (bs) of all the pre-

diction units edges and the transform unit edges
lying on the 8x8 grid.

– if (bs>0), then for each four-sample part of the
8x8 block, perform the filtering decisions (weak
filter, strong filter or no filter) and apply the filter-
ing on the samples.

∙ Perform vertical filtering of all horizontal edges in the
picture. The filtering steps are similar to the horizontal
filtering. However the modified samples after horizon-
tal filtering are used as input to the vertical filtering.

Profiling of HM-8.0 decoder is conducted to derive the
%𝑡𝑖𝑚𝑒𝑠𝑝𝑒𝑛𝑡 in the DBF stage. Table 1 shows the sequences
used for profiling and break down of execution times for the
DBF stage. For 1080p and 1600p we used the test sequences
described in the HEVC common conditions [15]. Sequences
under [16] are used for 2160p sequences.

Res Seq QP Config BR(Mbps) Deblocking%

1080p50 BasketBallDrive

22 Intra 71.333 12.26
37 Intra 8.543 14.76
22 RandomAccess 17.453 11.27
37 RandomAccess 1.527 11.54

1080p60 BQTerrace

22 Intra 180.205 10.08
37 Intra 21.843 15.30
22 RandomAccess 39.708 10.82
37 RandomAccess 1.020 9.79

1080p50 Cactus

22 Intra 105.393 11.63
37 Intra 14.328 15.61
22 RandomAccess 18.297 12.64
37 RandomAccess 1.423 12.87

1080p24 Kimono

22 Intra 22.251 12.10
37 Intra 3.842 14.01
22 RandomAccess 4.820 11.52
37 RandomAccess 0.565 11.23

1080p24 ParkScene

22 Intra 52.712 11.59
37 Intra 7.315 15.44
22 RandomAccess 7.685 11.69
37 RandomAccess .740 11.24

1600p60 NebutaFestival

22 Intra 402.598 6.50
37 Intra 81.510 13.50
22 RandomAccess 216.496 5.97
37 RandomAccess 7.148 10.92

1600p60 SteamLocomotive

22 Intra 100.196 13.22
37 Intra 14.485 14.42
22 RandomAccess 23.687 12.56
37 RandomAccess 1.246 11.60

1600p30 PeopleOnStreet

22 Intra 104.706 13.10
37 Intra 20.455 17.53
22 RandomAccess 32.850 15.08
37 RandomAccess 4.666 16.75

1600p30 Traffic

22 Intra 101.828 13.08
37 Intra 18.516 16.37
22 RandomAccess 13.189 13.10
37 RandomAccess 1.351 12.09

2160p50 ParkJoy

22 Intra 635.207 10.18
37 Intra 92.469 14.64
22 RandomAccess 191.823 11.10
37 RandomAccess 13.602 12.53

2160p30 PeopleOnStreet4K

22 Intra 479.112 10.78
37 Intra 149.474 14.42
22 RandomAccess 344.332 11.79
37 RandomAccess 84.695 13.70

Table 1: Profiling of sequences using HM-8.0 decoder.
The DBF stage consumes around 10-17% of the whole

decoding time. Therefore efficient parallelization of the DBF
stage can reduce the overall decoding time of the picture by a
good factor. Explanation of different parallel DBF implemen-
tation methods follows:

Fig. 1: Deblocking filter sample dependencies across LCU
borders and thread regions

For all the parallel DBF methods, consecutive LCU rows
are equally divided among threads to perform DBF parallely,
as depicted in subfigure A of Figure 2 and Figure 3, Figure 4
respectively. The number of LCU rows assigned to each
thread is:
(𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝐶𝑈𝑅𝑜𝑤𝑠/𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇ℎ𝑟𝑒𝑎𝑑𝑠). If
the remainder of the division is an odd number, the first
thread is assigned an extra LCU row. LCU rows 1, 2 together
named as Thread𝑟𝑒𝑔𝑖𝑜𝑛1 are filtered by thread1, LCU rows 3,
4 ( Thread𝑟𝑒𝑔𝑖𝑜𝑛2) are filtered by thread2 and so on. LCUs
are processed in raster scan order inside each Thread𝑟𝑒𝑔𝑖𝑜𝑛.

The dependencies for performing DBF parallely are de-
picted in Figure 1. The figure depicts one 16x16 sample grid
across four LCU borders, spanning two Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑠. The
DBF modifies a maximum of three samples on either side of
the edge as depicted for the samples of LCU A in Figure 1.
Therefore vertical edge filtering of one edge does not affect
the filtering of other vertical edges and therefore can be car-
ried out in parallel. The same applies for filtering of horizon-
tal edges. Although as depicted in Figure 1, during the filter-
ing of vertical edge V2, the samples A2,5, A1,5, A0,5, A2,6,
A1,6, A0,6, A2,7, A1,7, A0,7 may be modified if strong filter-
ing is chosen. The resulting samples after horizontal filtering
of V2 are used for vertical filtering of H3: Therefore, the fil-
tering of horizontal edge H3 cannot be initiated by 𝑡ℎ𝑟𝑒𝑎𝑑2
until 𝑡ℎ𝑟𝑒𝑎𝑑1 finishes the filtering of vertical edge V2. DBF
of H.264/AVC operates over an grid of 4x4 samples and there-
fore results in overlap between filtered samples. Hence unlike
DBF of AVC, vertical and horizontal edge filtering phases are
implicitly parallelizable in DBF of HEVC.

3.1. Separate filtering (SF)

This method performs the parallel vertical edge filtering and
parallel horizontal edge filtering in separate passes to fulfill
the dependencies of DBF. Algorithm 1 explains the horizon-
tal DBF of vertical edges. The output picture after horizontal
DBF is used as input for vertical DBF of horizontal edges.
For vertical DBF, consecutive LCU columns are equally di-
vided among threads as depicted in subfigure B of Figure 2.
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Algorithm 2 explains the vertical DBF.

Algorithm 1 Parallel horizontal DBF of vertical edges
(Pass1)

1: procedure HOR FILTER(𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠, 𝑃 𝑖𝑐𝑡𝑢𝑟𝑒)
2: 𝑆𝑡𝑎𝑟𝑡← 0
3: 𝑁𝑢𝑚 𝑅𝑜𝑤𝑠← (𝑇𝑜𝑡𝑎𝑙 𝐿𝐶𝑈𝑟𝑜𝑤𝑠/𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠)
4: for 𝑖 = 1→ 𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
5: for 𝑗 = 𝑆𝑡𝑎𝑟𝑡→ 𝑁𝑢𝑚 𝑅𝑜𝑤𝑠 do
6: Perform filtering of all vertical edges
7: end for
8: 𝑆𝑡𝑎𝑟𝑡← 𝑁𝑢𝑚 𝑅𝑜𝑤𝑠
9: 𝑁𝑢𝑚 𝑅𝑜𝑤𝑠← 𝑁𝑢𝑚 𝑅𝑜𝑤𝑠+𝑁𝑢𝑚 𝑅𝑜𝑤𝑠

10: end for
11: end procedure

Algorithm 2 Parallel vertical DBF of horizontal edges
(Pass2)

1: procedure VER FILTER(𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠, 𝑃 𝑖𝑐𝑡𝑢𝑟𝑒)
2: 𝑆𝑡𝑎𝑟𝑡← 0
3: 𝑁𝑢𝑚 𝐶𝑜𝑙← (𝑇𝑜𝑡𝑎𝑙 𝐿𝐶𝑈𝐶𝑜𝑙/𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠)
4: for 𝑖 = 1→ 𝑁𝑢𝑚 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
5: for 𝑗 = 𝑆𝑡𝑎𝑟𝑡→ 𝑁𝑢𝑚 𝐶𝑜𝑙 do
6: Perform filtering of all horizontal edges
7: end for
8: 𝑆𝑡𝑎𝑟𝑡← 𝑁𝑢𝑚 𝐶𝑜𝑙
9: 𝑁𝑢𝑚 𝐶𝑜𝑙← 𝑁𝑢𝑚 𝐶𝑜𝑙 +𝑁𝑢𝑚 𝐶𝑜𝑙

10: end for
11: end procedure

3.2. Combined Filtering1 (CF1) and Combined Filter-
ing2 (CF2)

In CF1 and CF2 methods, as a first step, the DBF of ver-
tical edges of each Thread𝑟𝑒𝑔𝑖𝑜𝑛 is performed in a concur-
rent fashion. In Combined filtering1 (CF1), to fulfill DBF
dependencies, after 𝑡ℎ𝑟𝑒𝑎𝑑𝑁 finishes the filtering of all the
vertical edges in its thread region, it consequently waits for
𝑡ℎ𝑟𝑒𝑎𝑑𝑁−1 to finish its horizontal filtering of vertical edges,
before triggering the vertical filtering of all horizontal edges
which belong to its own region. This situation is depicted in
Figure 3. Although, if more than one LCU row belong to a
Thread𝑟𝑒𝑔𝑖𝑜𝑛, then the thread can initiate the vertical filtering
of the horizontal edges from its 2nd LCU row onwards. This
is due to the fact that DBF operates over each 8x8 sample grid
and only modifies a maximum of three samples on either side
of the edge. Hence only the first LCU row has dependencies
across Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑠.

Therefore in Combined filtering2 (CF2), the filtering of
horizontal edges of just the first LCU row of each Thread𝑟𝑒𝑔𝑖𝑜𝑛
is postponed until all the vertical edges of the Thread𝑟𝑒𝑔𝑖𝑜𝑛

Fig. 2: Parallel separate filtering of horizontal and vertical
edges for each picture.

Fig. 3: CombinedFiltering1 (Vertical edges in all
Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑠 are processed concurrently. For hori-
zontal edge filtering, Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑁 has to wait for
Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑁−1 to finish filtering of vertical edges).

Fig. 4: CombinedFiltering2 (Vertical edges in all
Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑠 are processed concurrently. For horizon-
tal edge filtering, only filtering of horizontal edges which
belong to first LCU row from Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑁 need to wait for
Thread𝑟𝑒𝑔𝑖𝑜𝑛𝑁−1 to finish filtering of vertical edges).

above it are filtered. As depicted in Figure 4 , 𝑡ℎ𝑟𝑒𝑎𝑑2 initi-
ates the filtering of horizontal edges in LCU row 4 as soon as
all the vertical edges which belong to its own Thread𝑟𝑒𝑔𝑖𝑜𝑛2

are filtered. Hence only the vertical filtering of all horizontal
edges of LCUs in LCU row 3 need to wait for Thread𝑟𝑒𝑔𝑖𝑜𝑛1
to finish its horizontal filtering of vertical edges.

4. RESULTS

The parallel deblocking filter methods are implemented on
top of the DBF present in HM-8.0 decoder. The sequences in
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Table 1 are used to evaluate the decoder. The configuration of
the test machine is as follows:
∙ Linux 64 bits, gcc version:4.6.3, Intel(R) Xeon(R) CPU

W3670 @ 3.20GHz, 6 cores on single die (Turbo boost
off), cache size: 12288 KB.
∙ Pthread library is used for multi threading implementa-

tions.
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Fig. 5: Accelerating factors of different parallel DBF imple-
mentations for HD (1080p) sequences.
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Fig. 6: Accelerating factors of different parallel DBF imple-
mentations for 1600p sequences.
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Fig. 7: Accelerating factors of different parallel DBF imple-
mentations for 2160p sequences.

The average accelerating factors (AF) for each of the
methods are ascertained. The AFs are measured with ref-
erence to the serial DBF of HM-8.0 decoder. (value 0 on
x-axis). The AFs for 1080p sequences are depicted in subfig-
ures a, b, c, d of Figure 5. Combined Filtering1 (CF1) and
Combined Filtering2 (CF2) methods perform slightly better
when compared to Separate filtering (SF) method which is
similar to the parallel DBF approach proposed in Tiles de-
coder of [1]. AFs of CF2 are slightly better when compared
to CF1 for randomaccess QP37 sequences (subfigure d). AFs
for 1600p and 2160p sequences are depicted in the Figure 6
and Figure 7 respectively. The results for 1600p and 2160p
sequences follow similar pattern as that of 1080p sequences.
To summarize the results : On a 6 core machine with 6 threads
running concurrently, experimental results show an AF of 4.5,
5 and 5 for each of the implementation methods on 1080p,
1600p and 2160p sequences respectively.

5. CONCLUSION

In this paper we presented comparison of three different par-
allelization implementations of deblocking filtering in HEVC
which operate with whole picture as input. One of the meth-
ods performs the vertical filtering and horizontal filtering in
separate passes. The other two proposed methods perform the
vertical filtering and horizontal filtering in a single pass. On
a 6 core machine with 6 threads running concurrently all the
three methods achieve accelerating factors close to the num-
ber of cores.
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